Functionalization of multi-walled carbon nanotubes with thermo-responsive azide-terminated poly(N-isopropylacrylamide) via click reactions.

نویسندگان

  • Xin Su
  • Ya Shuai
  • Zanru Guo
  • Yujun Feng
چکیده

Covalently functionalized multi-walled carbon nanotubes (MWNTs) were prepared by grafting well-defined thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) via click reactions. First, azide-terminated poly(N-isopropylacrylamide) (N3-PNIPAM) was synthesized by reversible addition fragmentation chain-transfer (RAFT) polymerization, and then the N₃-PNIPAM moiety was connected onto MWNTs by click chemistry. The products were characterized by means of FT-IR, TGA and TEM. The results show that the modification of MWNTs is very successful and MWNTs functionalized by N₃-PNIPAM (MWNTs-PNIPAM) have good solubility and stability in water. TEM images show the functionalized MWNTs are dispersed individually, indicating that the bundles of original MWNTs are separated into individual tubes by surface modification with polymer chains. These MWNTs modified with PNIPAM represent a potential nano-material for preparation of hydrophilic composite materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat and light dual switching of a single-walled carbon nanotube/thermo-responsive helical polysaccharide complex: a new responsive system applicable to photodynamic therapy.

A thermo- and light-responsive system consisting of single-walled carbon nanotube and helical polysaccharide modified with poly(N-isopropylacrylamide) side-chains has been developed through supramolecular polymer wrapping. Coagulation of the complex can be induced by the external stimuli, which leads to a catch-and-release action of a porphyrin derivative.

متن کامل

Grafted Copolymer Based on Chitosan and Poly(N-Isopropylacryl Amide) via Click Technique. I. Synthesis and Characterization

As chitosan’s solubility represents a drawback for further applications, the functionalization of chitosan became attractive by a variety of chemical methods. The present study deals with the chemical modification of chitosan by using click chemistry technique as versatile tool being easy to perform with high yields and no additional by products. The approach used herein was to attach a respons...

متن کامل

Electroactive carbon nanoforms: a comparative study via sequential arylation and click chemistry reactions.

The reactivity of several carbon nanoforms (CNFs), single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and graphene, has been investigated through a combination of arylation and click chemistry Cu(I)-mediated azide-alkyne cycloaddition (CuAAC) reactions. The approach is based on the incorporation of electroactive π-extended tetrathiafulvalene (exTTF) units into the t...

متن کامل

One-pot Three-component Functionalization of Carboxylated Shortend Multi-wall Nanotubes with Histidine Derivative

In this project, a three-component functionalization of carboxylated shortend multi-walled carbon nanotubes (MWNT-COOH) by Histidine derivative via amidation method have been investigated. The functionalized MWNTs were characterized by Fourier Transform Infrared spectroscopy (FT-IR), Raman spectroscopy, elemental analysis and scanning electron microscopy (SEM). 

متن کامل

Temperature and pH-responsive single-walled carbon nanotube dispersions.

Solubilization of single-walled carbon nanotubes (SWNTs) using noncovalently interacting polymer surfactants in aqueous media has opened up a new vista of SWNTs in biology and medicine. In many potential applications, it is desirable to control the dispersion or aggregation of SWNTs in solvents with external stimuli. Here we report two "smart" SWNT dispersions that respond to temperature and pH...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 18 4  شماره 

صفحات  -

تاریخ انتشار 2013