Mappings of Finite Distortion between Metric Measure Spaces
نویسنده
چکیده
We establish the basic analytic properties of mappings of finite distortion between proper Ahlfors regular metric measure spaces that support a (1, 1)-Poincaré inequality. As applications, we prove that under certain integrability assumption for the distortion function, the branch set of a mapping of finite distortion between generalized n-manifolds of type A has zero Hausdorff n-measure.
منابع مشابه
SOME COUPLED FIXED POINT RESULTS ON MODIFIED INTUITIONISTIC FUZZY METRIC SPACES AND APPLICATION TO INTEGRAL TYPE CONTRACTION
In this paper, we introduce fruitful concepts of common limit range and joint common limit range for coupled mappings on modified intuitionistic fuzzy metric spaces. An illustrations are also given to justify the notion of common limit range and joint common limit range property for coupled maps. The purpose of this paper is to prove fixed point results for coupled mappings on modified intuitio...
متن کاملRamsey-like properties for bi-Lipschitz mappings of finite metric spaces
Let (X, ρ), (Y, σ) be metric spaces and f : X → Y an injective mapping. We put ‖f‖Lip = sup{σ(f(x), f(y))/ρ(x, y); x, y ∈ X, x 6= y}, and dist(f) = ‖f‖Lip .‖f ‖Lip (the distortion of the mapping f). Some Ramsey-type questions for mappings of finite metric spaces with bounded distortion are studied; e.g., the following theorem is proved: Let X be a finite metric space, and let ε > 0, K be given ...
متن کاملFIXED POINT THEOREM OF KANNAN-TYPE MAPPINGS IN GENERALIZED FUZZY METRIC SPACES
Binayak et al in [1] proved a fixed point of generalized Kannan type-mappings in generalized Menger spaces. In this paper we extend gen- eralized Kannan-type mappings in generalized fuzzy metric spaces. Then we prove a fixed point theorem of this kind of mapping in generalized fuzzy metric spaces. Finally we present an example of our main result.
متن کاملComposition of resolvents and quasi-nonexpansive multivalued mappings in Hadamared spaces
The proximal point algorithm, which is a well-known tool for finding minima of convex functions, is generalized from the classical Hilbert space framework into a nonlinear setting, namely, geodesic metric spaces of nonpositive curvature. In this paper we propose an iterative algorithm for finding the common element of the minimizers of a finite family of convex functions a...
متن کاملQuasi-contractive Mappings in Fuzzy Metric Spaces
We consider the concept of fuzzy quasi-contractions initiated by '{C}iri'{c} in the setting of fuzzy metric spaces and establish fixed point theorems for quasi-contractive mappings and for fuzzy $mathcal{H}$-contractive mappings on M-complete fuzzy metric spaces in the sense of George and Veeramani.The results are illustrated by a representative example.
متن کامل