Newsletter Finite - Difference Time - Domain Simulations of EM Wave and Plasma Interactions in the Ionosphere ( image courtesy of
نویسنده
چکیده
Ionospheric modification by means of high-power electromagnetic (EM) waves can result in the excitation of a diverse range of plasma waves and instabilities. In this article we summarise of the development and application of a GPU-accelerated finite-difference time-domain (FDTD) code designed to simulate the time-explicit response of an ionospheric plasma to incident EM waves. The code was used to investigate the mechanisms behind several recent experimental observations which have not been fully understood, including the effect of 2D density inhomogeneity on the O-mode to Z-mode conversion process and thus the shape of the conversion window, and the influence of EM wave polarisation and frequency on the growth of density irregularities.
منابع مشابه
An efficient finite difference time domain algorithm for band structure calculations of Phononic crystal
In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...
متن کاملRecent Advances in FDTD Modeling of Electromagnetic Wave Propagation in the Ionosphere
─ Finite-Difference Time-Domain (FDTD) modeling of electromagnetic wave propagation in the Earth-ionosphere waveguide has gained significant interest over the past two decades. Initially, FDTD modeling capabilities were largely limited to two-dimensional models assuming a plasma ionosphere (but incapable of accounting for Faraday rotation), or to threedimensional global models assuming a simple...
متن کاملتحلیل آنتن پلاسمای ستونی با تحریک موج سطحی
This theoretical study examines the characteristics of a surface wave driven plasma monopole antenna using finite difference time domain method (FDTD) as well as commercial full wave simulator. The results show that the full wave simulator can be considered as an acceptable tool in simulation of a plasma antenna. Input impedance, radiation pattern, gain, efficiency and radar cross section of pl...
متن کاملDiscretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study
This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...
متن کاملSeismic Wave-Field Propagation Modelling using the Euler Method
Wave-field extrapolation based on solving the wave equation is an important step in seismic modeling and needs a high level of accuracy. It has been implemented through a various numerical methods such as finite difference method as the most popular and conventional one. Moreover, the main drawbacks of the finite difference method are the low level of accuracy and the numerical dispersion for l...
متن کامل