Function-driven Linearly Independent Expansions of Boolean Functions
نویسندگان
چکیده
The paper presents a family of new expansions of Boolean functions called Function-driven Linearly Independent (fLI) expansions. On the basis of this expansion a new kind of a canonical representation of Boolean functions is constructed: Function-driven Linearly Independent Binary Decision Diagrams (fLIBDDs). They generalize both Function-driven Shannon Binary Decision Diagrams (fShBDDs) and Linearly Independent Binary Decision Diagram (LIBDDs). The diagrams introduced in the paper, can provide significantly smaller representations of Boolean functions than standard Ordered Binary Decision Diagrams (OBDDs), Ordered Functional Decision Diagrams (OFDDs) and Ordered (Pseudo-) Kronecker Functional Decision Diagrams (OKFDDs) and can be applied to synthesis of reversible circuits.
منابع مشابه
ON THE FUZZY SET THEORY AND AGGREGATION FUNCTIONS: HISTORY AND SOME RECENT ADVANCES
Several fuzzy connectives, including those proposed by Lotfi Zadeh, can be seen as linear extensions of the Boolean connectives from the scale ${0,1}$ into the scale $[0,1]$. We discuss these extensions, in particular, we focus on the dualities arising from the Boolean dualities. These dualities allow to transfer the results from some particular class of extended Boolean functions, e.g., from c...
متن کاملOn some classes of expansions of ideals in $MV$-algebras
In this paper, we introduce the notions of expansion of ideals in $MV$-algebras, $ (tau,sigma)- $primary, $ (tau,sigma)$-obstinate and $ (tau,sigma)$-Boolean in $ MV- $algebras. We investigate the relations of them. For example, we show that every $ (tau,sigma)$-obstinate ideal of an $ MV-$ algebra is $ (tau,sigma)$-primary and $ (tau,sigma)$-Boolean. In particular, we define an expansion $ ...
متن کاملNonharmonic Gabor Expansions
We consider Gabor systems generated by a Gaussian function and prove certain classical results of Paley and Wiener on nonharmonic Fourier series of complex exponentials for the Gabor expansion. In particular, we prove a version of Plancherel-Po ́lya theorem for entire functions with finite order of growth and use the Hadamard factorization theorem to study regularity, exactness and deficienc...
متن کاملOn Some Iteration Properties of Boolean Functions
This paper introduces and describes an iterative model for the study of some properties of Boolean functions. Several kinds of iterative functions are studied: they are obtained by substituting some of the independent variables x, off (x) by the function f itself. Algebraic formulas relating classical representation modes of Boolean functions to the iterative forms are introduced. Several possi...
متن کاملOn the Calculation of Generalized Reed-muller Canonical Expansions from Disjoint Cube Representation of Boolean Functions
A new algorithm is shown that converts disjoint cube representation of Boolean functions into fixed-polarity Generalized Reed-Muller Expansions (GRME). Since the known fast algorithm Ihal generates the GRME based on the factorization or thc Reed-Muller transform matrix always starts from the truth table (minterms) of Boolean function, then the described method has the advantages due to smaller ...
متن کامل