Similarity Matrix Based Session Clustering by Sequence Alignment Using Dynamic Programming
نویسندگان
چکیده
With the rapid increasing popularity of the WWW, Websites are playing a crucial role to convey knowledge to the end users. Every request of Web site or a transaction on the server is stored in a file called server log file. Providing Web administrator with meaningful information about user access behavior (also called click stream data) has become a necessity to improve the quality of Web information and service performance. As such, the hidden knowledge obtained from mining, web server traffic data and user access patterns ( called Web Usage Mining), could be directly used for marketing and management of E-business, E-services, E-searching , E-education and so on. Categorizing visitors or users based on their interaction with a web site is a key problem in web usage mining. The click stream generated by various users often follows distinct patterns, clustering of the access pattern will provide the knowledge, which may help in recommender system of finding learning pattern of user in E-learning system , finding group of visitors with similar interest , providing customized content in site manager, categorizing customers in E-shopping etc. Given session information, this paper focuses a method to find session similarity by sequence alignment using dynamic programming, and proposes a model such as similarity matrix for representing session similarity measures. The work presented in this paper follows Agglomerative Hierarchical Clustering method to cluster the similarity matrix in order to group similar sessions and the clustering process is depicted in dendrogram diagram.
منابع مشابه
A Dynamic Programming Approach To Document Clustering Based On Term Sequence Alignment
Document clustering is unsupervised machine learning technique that, when provided with a large document corpus, automatically sub-divides it into meaningful smaller sub-collections called clusters. Currently, document clustering algorithms use sequence of words (terms) to compactly represent documents and define a similarity function based on the sequences. We believe that the word sequence is...
متن کاملExtracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method
In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...
متن کاملAn Application of the ABS LX Algorithm to Multiple Sequence Alignment
We present an application of ABS algorithms for multiple sequence alignment (MSA). The Markov decision process (MDP) based model leads to a linear programming problem (LPP), whose solution is linked to a suggested alignment. The important features of our work include the facility of alignment of multiple sequences simultaneously and no limit for the length of the sequences. Our goal here is to ...
متن کاملGeneRAGE: a robust algorithm for sequence clustering and domain detection
MOTIVATION Efficient, accurate and automatic clustering of large protein sequence datasets, such as complete proteomes, into families, according to sequence similarity. Detection and correction of false positive and negative relationships with subsequent detection and resolution of multi-domain proteins. RESULTS A new algorithm for the automatic clustering of protein sequence datasets has bee...
متن کاملgpALIGNER: A Fast Algorithm for Global Pairwise Alignment of DNA Sequences
Bioinformatics, through the sequencing of the full genomes for many species, is increasingly relying on efficient global alignment tools exhibiting both high sensitivity and specificity. Many computational algorithms have been applied for solving the sequence alignment problem. Dynamic programming, statistical methods, approximation and heuristic algorithms are the most common methods appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer and Information Science
دوره 1 شماره
صفحات -
تاریخ انتشار 2008