Smooth Approximation of Weak Finsler Metrics
نویسنده
چکیده
Smooth Finsler metrics are a natural generalization of Riemannian ones and have been widely studied in the framework of differential geometry. The definition can be weakened by allowing the metric to be only Borel measurable. This generalization is necessary in view of applications, such as, for instance, optimization problems. In this paper we show that smooth Finsler metrics are dense in Borel ones, generalizing the results obtained in [15]. The case of degenerate Finsler distances is also discussed.
منابع مشابه
And the Funk Metric
We discuss general notions of metrics and of Finsler structures which we call weak metrics and weak Finsler structures. Any convex domain carries a canonical weak Finsler structure, which we call its tautological weak Finsler structure. We compute distances in the tautological weak Finsler structure of a domain and we show that these are given by the so-called Funk weak metric. We conclude the ...
متن کاملCharacterization of a Banach-finsler Manifold in Terms of the Algebras of Smooth Functions
In this note we give sufficient conditions to ensure that the weak Finsler structure of a complete C Finsler manifold M is determined by the normed algebra C b (M) of all real-valued, bounded and C k smooth functions with bounded derivative defined on M . As a consequence, we obtain: (i) the Finsler structure of a finite-dimensional and complete C Finsler manifold M is determined by the algebra...
متن کاملGeneralized Douglas-Weyl Finsler Metrics
In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.
متن کاملOn a class of locally projectively flat Finsler metrics
In this paper we study Finsler metrics with orthogonal invariance. We find a partial differential equation equivalent to these metrics being locally projectively flat. Some applications are given. In particular, we give an explicit construction of a new locally projectively flat Finsler metric of vanishing flag curvature which differs from the Finsler metric given by Berwald in 1929.
متن کاملProjectively Flat Finsler Metrics of Constant Curvature
It is the Hilbert’s Fourth Problem to characterize the (not-necessarilyreversible) distance functions on a bounded convex domain in R such that straight lines are shortest paths. Distance functions induced by a Finsler metric are regarded as smooth ones. Finsler metrics with straight geodesics said to be projective. It is known that the flag curvature of any projective Finsler metric is a scala...
متن کامل