Consonant Classification using Decision Directed Acyclic Graph Support Vector Machine Algorithm
نویسندگان
چکیده
This paper presents a statistical learning algorithm based on Support Vector Machines (SVMs) for the classification of Malayalam Consonant – Vowel (CV) speech unit in noisy environments. We extend SVM for multiclass classification using Decision Directed Acyclic Graph Support Vector Machine (DDAGSVM) algorithm. For classification, acoustical features are extracted using Wavelet Transform (WT) based Normalized Wavelet Hybrid Features (NWHF) by combining both Classical Wavelet Decomposition (CWD) and Wavelet Packet Decomposition (WPD) along with z – score normalization. An optimum mother wavelet for the present speech database is selected as db2 by trial and error approach. The classification results are then compared with both Artificial Neural Networks (ANNs) and k – Nearest Neighborhood (k – NN) classifiers. The results indicate that the DDAGSVM algorithm perform well in additive noisy condition.
منابع مشابه
State Space Point Distribution Parameter for Support Vector Machine Based Cv Unit Classification
In this paper we extend Support Vector Machines (SVM) for speaker independent Consonant – Vowel (CV) unit classification. Here we adopt the technique known as Decision Directed Acyclic Graph (DDAG) , which is used to combine many two class classifiers into multiclass classifier. Using Reconstructed State Space (RSS) based State Space Point Distribution (SSPD) parameters, we obtain an average sp...
متن کاملReconstructed State Space Model for Recognition of Consonant – Vowel (cv) Utterances Using Support Vector Machines
This paper presents a study on the use of Support Vector Machines (SVMs) in classifying Malayalam Consonant – Vowel (CV) speech unit by comparing it to two other classification algorithms namely Artificial Neural Network (ANN) and k – Nearest Neighbourhood (k – NN). We extend SVM to combine many two class classifiers into multiclass classifier using Decision Directed Acyclic Graph (DDAG) algori...
متن کاملThe Upper Preferred Multiple Directed Acyclic Graph Support Vector Machines for Classification
The current classification algorithms have weak fault-tolerance. In order to solve the problem, a multiple support vector machines method, called Upper preferred Multiple Directed Acyclic Graph Support Vector Machines (UMDAG-SVMs), is proposed. Firstly, we present least squares projection twin support vector machine (LSPTSVM) with confidence-degree for generating binary classifiers. It uses the...
متن کاملMulticlass Support Vector Machines Using Adaptive Directed Acyclic Graph
This paper presents a method of extending Support Vector Machines (SVMs) for dealing with multiclass problems. Motivated by the Decision Directed Acyclic Graph (DDAG), we propose the Adaptive DAG (ADAG): a modified structure of the DDAG that has a lower number of decision levels and reduces the dependency on the sequence of nodes. Thus, the ADAG improves the accuracy of the DDAG while maintaini...
متن کاملAutomatic Construction Algorithm for Multi-class Support Vector Machines with Binary Tree Architecture
Multi-class support vector machines with binary tree architecture (SVM-BTA) have the fastest decision-making speed in the existing multi-class SVMs. But SVM-BTA usually has bad classification capability. According to internal characteristics of feature samples, this paper uses resemblance coefficient method to construct automatically binary tree to incorporate multiple binary SVMs. The multi-cl...
متن کامل