Evaporation rate of water in hydrophobic confinement.

نویسندگان

  • Sumit Sharma
  • Pablo G Debenedetti
چکیده

The drying of hydrophobic cavities is believed to play an important role in biophysical phenomena such as the folding of globular proteins, the opening and closing of ligand-gated ion channels, and ligand binding to hydrophobic pockets. We use forward flux sampling, a molecular simulation technique, to compute the rate of capillary evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of gap, surface size, and temperature. Over the range of conditions investigated (gaps between 9 and 14 Å and surface areas between 1 and 9 nm(2)), the free energy barrier to evaporation scales linearly with the gap between hydrophobic surfaces, suggesting that line tension makes the predominant contribution to the free energy barrier. The exponential dependence of the evaporation rate on the gap between confining surfaces causes a 10 order-of-magnitude decrease in the rate when the gap increases from 9 to 14 Å. The computed free energy barriers are of the order of 50 kT and are predominantly enthalpic. Evaporation rates per unit area are found to be two orders of magnitude faster in confinement by the larger (9 nm(2)) than by the smaller (1 nm(2)) surfaces considered here, at otherwise identical conditions. We show that this rate enhancement is a consequence of the dependence of hydrophobic hydration on the size of solvated objects. For sufficiently large surfaces, the critical nucleus for the evaporation process is a gap-spanning vapor tube.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of material flexibility on the thermodynamics and kinetics of hydrophobically induced evaporation of water.

The evaporation of water induced by confinement between hydrophobic surfaces has received much attention due to its suggested functional role in numerous biophysical phenomena and its importance as a general mechanism of hydrophobic self-assembly. Although much progress has been made in understanding the basic physics of hydrophobically induced evaporation, a comprehensive understanding of the ...

متن کامل

Enhancement of Water Evaporation on Solid Surfaces with Nanoscale Hydrophobic-Hydrophilic Patterns.

Using molecular dynamics simulations, we show that the evaporation of nanoscale water on hydrophobic-hydrophilic patterned surfaces is unexpectedly faster than that on any surfaces with uniform wettability. The key to this phenomenon is that, on the patterned surface, the evaporation rate from the hydrophilic region only slightly decreases due to the correspondingly increased water thickness; m...

متن کامل

Explicit and implicit modeling of nanobubbles in hydrophobic confinement.

Water at normal conditions is a fluid thermodynamically close to the liquid-vapor phase coexistence and features a large surface tension. This combination can lead to interesting capillary phenomena on microscopic scales. Explicit water molecular dynamics (MD) computer simulations of hydrophobic solutes, for instance, give evidence of capillary evaporation on nanometer scales, i.e., the formati...

متن کامل

Liquid-vapor oscillations of water in hydrophobic nanopores.

Water plays a key role in biological membrane transport. In ion channels and water-conducting pores (aquaporins), one-dimensional confinement in conjunction with strong surface effects changes the physical behavior of water. In molecular dynamics simulations of water in short (0.8 nm) hydrophobic pores the water density in the pore fluctuates on a nanosecond time scale. In long simulations (460...

متن کامل

Capillary Evaporation . I . Effect ? Hydrophobic Surfaces

Capillary evaporation (cavitation) has been suggested to be a possible source of long range interactions between mesoscopic hydrophobic surfaces. While evaporation is predicted by thermodynamics, little is known about its kinetics. Glauber dynamics Monte Carlo simulations of a lattice gas close to liquid-gas coexistence and confined between partially drying surfaces are used to model the effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 12  شماره 

صفحات  -

تاریخ انتشار 2012