An Improved Multiobjectivization Strategy for HP Model-Based Protein Structure Prediction

نویسندگان

  • Mario Garza-Fabre
  • Eduardo Rodriguez-Tello
  • Gregorio Toscano Pulido
چکیده

Through multiobjectivization, a single-objective problem is restated in multiobjective form with the aim of enabling a more efficient search process. Recently, this transformation was applied with success to the hydrophobic-polar (HP) lattice model, which is an abstract representation of the protein structure prediction problem. The use of alternative multiobjective formulations of the problem has led to significantly better results. In this paper, an improved multiobjectivization for the HP model is proposed. By decomposing the HP model’s energy function, a twoobjective formulation for the problem is defined. A comparative analysis reveals that the new proposed multiobjectivization evaluates favorably with respect to both the conventional single-objective and the previously reported multiobjective formulations. Statistical significance testing and the use of a large set of test cases support the findings of this study. Both two-dimensional and three-dimensional lattices are considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiobjectivizing the HP Model for Protein Structure Prediction

The hydrophobic-polar (HP) model for protein structure prediction abstracts the fact that hydrophobic interactions are a dominant force in the protein folding process. This model represents a hard combinatorial optimization problem, which has been widely addressed using evolutionary algorithms and other metaheuristics. In this paper, the multiobjectivization of the HP model is proposed. This or...

متن کامل

Improved Optimization Process for Nonlinear Model Predictive Control of PMSM

Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...

متن کامل

Protein Structure Prediction Based on HP Model Using an Improved Hybrid EDA

Protein structure prediction (PSP) is one of the most important problems in computational biology. This chapter introduces a novel hybrid Estimation of Distribution Algorithm (EDA) to solve the PSP problem on HP model. Firstly, a composite fitness function containing the information of folding structure core (H-Core) is introduced to replace the traditional fitness function of HP model. The new...

متن کامل

A Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle

Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...

متن کامل

The Protein Structure Prediction Problem: A Constraint Optimisation Approach using a New Lower Bound

Constraint Optimisation Approach using a New Lower Bound Rolf Backofen Institut f ur Informatik Ludwig-Maximilians-Universitat M unchen Oettingenstra e 67, D-80538 M unchen October 13, 1998 Abstract The protein structure prediction problem is one of the most (if not the most) important problem in computational biology. This problem consists of nding the conformation of a protein (i.e., a se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012