Nuclear Localization of the DNA Repair Scaffold XRCC1: Uncovering the Functional Role of a Bipartite NLS

نویسندگان

  • Thomas W. Kirby
  • Natalie R. Gassman
  • Cassandra E. Smith
  • Lars C. Pedersen
  • Scott A. Gabel
  • Mack Sobhany
  • Samuel H. Wilson
  • Robert E. London
چکیده

We have characterized the nuclear localization signal (NLS) of XRCC1 structurally using X-ray crystallography and functionally using fluorescence imaging. Crystallography and binding studies confirm the bipartite nature of the XRCC1 NLS interaction with Importin α (Impα) in which the major and minor binding motifs are separated by >20 residues, and resolve previous inconsistent determinations. Binding studies of peptides corresponding to the bipartite NLS, as well as its major and minor binding motifs, to both wild-type and mutated forms of Impα reveal pronounced cooperative binding behavior that is generated by the proximity effect of the tethered major and minor motifs of the NLS. The cooperativity stems from the increased local concentration of the second motif near its cognate binding site that is a consequence of the stepwise binding behavior of the bipartite NLS. We predict that the stepwise dissociation of the NLS from Impα facilitates unloading by providing a partially complexed intermediate that is available for competitive binding by Nup50 or the Importin β binding domain. This behavior provides a basis for meeting the intrinsically conflicting high affinity and high flux requirements of an efficient nuclear transport system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of -77T>C and Arg194trp polymorphisms of XRCC1 with risk of coronary artery diseases in Iranian population

Objective(s): Coronary artery disease (CAD) is the leading cause of death in both male and female worldwide. The main cause of CAD is the atherosclerosis of coronary arteries, which is, mostly caused by genetic alteration. 50% of such cases occur in mitotic cells where single-strand breaks occur spontaneously or due to ionizing radiation. X-ray repair cross-complementing protein 1 (XRCC1) as a ...

متن کامل

Structural basis of nuclear import of flap endonuclease 1 (FEN1).

Flap endonuclease 1 (FEN1) is a member of the nuclease family and is structurally conserved from bacteriophages to humans. This protein is involved in multiple DNA-processing pathways, including Okazaki fragment maturation, stalled replication-fork rescue, telomere maintenance, long-patch base-excision repair and apoptotic DNA fragmentation. FEN1 has three functional motifs that are responsible...

متن کامل

Cell cycle-dependent and DNA damage-inducible nuclear localization of FEN-1 nuclease is consistent with its dual functions in DNA replication and repair.

Flap endonuclease-1 (FEN-1), a 43-kDa protein, is a structure-specific and multifunctional nuclease. It plays important roles in RNA primer removal of Okazaki fragments during DNA replication, DNA base excision repair, and maintenance of genome stability. Three functional motifs of the enzyme were proposed to be responsible for its nuclease activities, interaction with proliferating cell nuclea...

متن کامل

The Rev1 interacting region (RIR) motif in the scaffold protein XRCC1 mediates a low-affinity interaction with polynucleotide kinase/phosphatase (PNKP) during DNA single-strand break repair

The scaffold protein X-ray repair cross-complementing 1 (XRCC1) interacts with multiple enzymes involved in DNA base excision repair and single-strand break repair (SSBR) and is important for genetic integrity and normal neurological function. One of the most important interactions of XRCC1 is that with polynucleotide kinase/phosphatase (PNKP), a dual-function DNA kinase/phosphatase that proces...

متن کامل

Association of two polymorphisms in MSH2 and XRCC1 genes with multiple sclerosis in Iranian population

Introduction: To protect genomes of all organisms from internal and external damages and maintain the genome integrity and the continuity of life, repair system has been developed in all living cells. Defects in repair system are responsible for various kinds of disease including cancers and neurodegenerative diseases such as Multiple sclerosis (MS). The relationship between various compone...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015