Numerical Modelling of Viscoplastic Free Surface Flows in Complex 3d Geometries
نویسندگان
چکیده
We study a numerical method for the simulation of free surface flows of viscoplastic (Herschel-Bulkley) fluids. The approach is based on the level set method for capturing the free surface evolution and on locally refined and dynamically adapted octree cartesian staggered grids for the discretization of fluid and level set equations. We consider an extension of the stable approximation of the Newtonian flow equations on staggered grid to approximate the visoplastic model and level-set equations if the free boundary evolves and the mesh is dynamically refined or coarsened. In the Newtonian case, the convergence of numerical solutions is observed towards experimental data when the mesh is refined. We compute several viscoplastic Herschel-Bulkley fluid flows over incline planes for the dam-break problem. The comparison of numerical solutions is done versus experimental studies, indicating that intrinsically 3D numerical simulations are often required to compare well with a physical experiment. The efficacy of the numerical approach is demonstrated for a real-life application of landslide runout modelling in the Western Sayan mountains. Kirill D. Nikitin, Maxim A. Olshanskii, Kirill M. Terekhov and Yuri V. Vassilevski
منابع مشابه
A Numerical Method for the Simulation of Free Surface Flows of Viscoplastic Fluid in 3d
In this paper we study a numerical method for the simulation of free surface flows of viscoplastic (Herschel-Bulkley) fluids. The approach is based on the level set method for capturing the free surface evolution and on locally refined and dynamically adapted octree cartesian staggered grids for the discretization of fluid and level set equations. A regularized model is applied to handle the no...
متن کاملApplication of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries
In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...
متن کاملNumerical Simulation of Granular Column Collapses with Pressure-Dependent Viscoplastic Model using the Smoothed Particle Hydrodynamic Method
This paper presents a numerical analysis of granular column collapse phenomenon using a two-dimensional smoothed particle hydrodynamics model and a local constitutive law proposed by Jop et al. This constitutive law, which is based on the viscoplastic behaviour of dense granular material flows, is characterized by an apparent viscosity depending both on the local strain rate and the local press...
متن کاملRandom Vortex Method for Geometries with Unsolvable Schwarz-Christoffel Formula
In this research we have implemented the Random Vortex Method to calculate velocity fields of fluids inside open cavities in both turbulent and laminar flows. the Random Vortex Method is a CFD method (in both turbulent and laminar fields) which needs the Schwarz-Christoffel transformation formula to map the physical geometry into the upper half plane. In some complex geometries like the flow in...
متن کاملNumerical Simulation of Squeezed Flow of a Viscoplastic Material by a Three-step Smoothed Particle Hydrodynamics Method
In the current work, the mesh free Smoothed Particle Hydrodynamics (SPH) method, was employed to numerically investigate the transient flow of a viscoplastic material. Using this method, large deformation of the sample and its free surface boundary were captured without the cumbersome process of the grid generation. This three-step SPH scheme employs an explicit predictor-corrector technique an...
متن کامل