The First Passage Time and the Dividend Value Function for One-Dimensional Diffusion Processes between Two Reflecting Barriers
نویسندگان
چکیده
We consider the general one-dimensional time-homogeneous regular diffusion process between two reflecting barriers. An approach based on the Itô formula with corresponding boundary conditions allows us to derive the differential equations with boundary conditions for the Laplace transform of the first passage time and the value function. As examples, the explicit solutions of them for several popular diffusions are obtained. In addition, some applications to risk theory are considered.
منابع مشابه
Optimal asset control of the diffusion model under consideration of the time value of ruin
In this paper, we consider the optimal asset control of a financial company which can control its liquid reserves by paying dividends and by issuing new equity. We assume that the liquid surplus of the company in the absence of control is modeled by the diffusion model. It is a hot topic to maximize the expected present value of dividends payout minus equity issuance until the time of ba...
متن کاملSpace-time radial basis function collocation method for one-dimensional advection-diffusion problem
The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...
متن کاملOn the Construction of First-passage-time Densities for Diffusion Processes
A new method for constructing first-passage-time probability density functions in the case of regular one-dimensional time homogeneous diffusion processes restricted between constant boundaries is proposed. Some diffusion processes of particular interest in neuronal modeling are considered and thoroughly discusses.
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملLévy risk model with two-sided jumps and a barrier dividend strategy
In this paper,we consider a general Lévy riskmodelwith two-sided jumps and a constant dividend barrier. We connect the ruin problem of the ex-dividend risk process with the first passage problem of the Lévy process reflected at its running maximum. We prove that if the positive jumps of the risk model form a compound Poisson process and the remaining part is a spectrally negative Lévy process w...
متن کامل