Postnatal maturation of the spinal-bulbo-spinal loop: brainstem control of spinal nociception is independent of sensory input in neonatal rats
نویسندگان
چکیده
The rostroventral medial medulla (RVM) is part of a rapidly acting spino-bulbo-spinal loop that is activated by ascending nociceptive inputs and drives descending feedback modulation of spinal nociception. In the adult rat, the RVM can facilitate or inhibit dorsal horn neuron inputs but in young animals descending facilitation dominates. It is not known whether this early life facilitation is part of a feedback loop. We hypothesized that the newborn RVM functions independently of sensory input, before the maturation of feedback control. We show here that noxious hind paw pinch evokes no fos activation in the RVM or the periaqueductal gray at postnatal day (P) 4 or P8, indicating a lack of nociceptive input at these ages. Significant fos activation was evident at P12, P21, and in adults. Furthermore, direct excitation of RVM neurons with microinjection of DL-homocysteic acid did not alter the net activity of dorsal horn neurons at P10, suggesting an absence of glutamatergic drive, whereas the same injections caused significant facilitation at P21. In contrast, silencing RVM neurons at P8 with microinjection of lidocaine inhibited dorsal horn neuron activity, indicating a tonic descending spinal facilitation from the RVM at this age. The results support the hypothesis that early life descending facilitation of spinal nociception is independent of sensory input. Since it is not altered by RVM glutamatergic receptor activation, it is likely generated by spontaneous brainstem activity. Only later in postnatal life can this descending activity be modulated by ascending nociceptive inputs in a functional spinal-bulbo-spinal loop.
منابع مشابه
The selectivity of rostroventral medulla descending control of spinal sensory inputs shifts postnatally from A fibre to C fibre evoked activity
Brainstem descending control is crucial in maintaining the balance of excitation and inhibition in spinal sensory networks. In the adult, descending inhibition of spinal dorsal horn circuits arising from the brainstem rostroventral medial medulla (RVM) is targeted to neurons with a strong nociceptive C fibre input. Before the fourth postnatal week, the RVM exerts a net facilitation of spinal ne...
متن کاملRespiratory rhythm of brainstem-spinal cord preparations: Effects of maturation, age, mass and oxygenation.
We examined the effect of age, mass and the presence of the pons on the longevity (length of time spontaneous respiratory-related activity is produced) of brainstem-spinal cord preparations of neonatal rodents (rats and hamsters) and the level of oxygenation in the medulla respiratory network in these preparations. We found the longevity of the preparations from both species decreased with incr...
متن کاملMedullary control of nociceptive transmission: Reciprocal dual communication with the spinal cord
Control of pain perception, essential for organism surviving and recovery from disease, is exerted by higher brain centers integrating nociception with emotional and cognitive information and modulating the brainstem-spinal feedback loops that regulate spinal nociceptive transmission. Development of chronic pain deregulates the forebrain-brainstem-spinal pain control system, which leads to neur...
متن کاملProtein Kinase C and : Involvement in Formalin-Induced Nociception in Neonatal Rats
The central nervous system undergoes dynamic changes as it matures. However, until recently, very little was known about the impact of these changes on pain and analgesia. This study tested the hypothesis that the and isozymes of protein kinase C (PKC) contribute to formalin-induced nociception in an age-dependent manner. Expression of and PKC and the contributions of these isozymes in formalin...
متن کاملNicotinomid Adenin Dinucleotide Phosphate-Diaphorase (NADPH-d) Activity and CB-28 kDa Immunoreactivity in Spinal Neurons of Neonatal Rats after a Peripheral Nerve Lesion
Our previous studies have shown that median and ulnar nerve lesion induced calbindin (CB) immunoreactivity in some injured motoneurons in developing rats. Motoneuron death induced by sciatic nerve transection in neonatal rats has been related to induction of neuronal isoform of nitric oxide synthase (nNOS). The present study investigated whether expression of CB and nicotinomid adenin dinucleot...
متن کامل