Torsion Subgroups of Elliptic Curves in Short Weierstrass Form

نویسندگان

  • MICHAEL A. BENNETT
  • PATRICK INGRAM
چکیده

In a recent paper by M. Wieczorek, a claim is made regarding the possible rational torsion subgroups of elliptic curves E/Q in short Weierstrass form, subject to certain inequalities for their coefficients. We provide a series of counterexamples to this claim and explore a number of related results. In particular, we show that, for any ε > 0, all but finitely many curves EA,B : y 2 = x +Ax+B, where A and B are integers satisfying A > |B|1+ε > 0, have rational torsion subgroups of order either one or three. If we modify our demands upon the coefficients to |A| > |B|2+ε > 0, then the EA,B now have trivial rational torsion, with at most finitely many exceptions, at least under the assumption of the abc-conjecture of Masser and Oesterlé.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Curves in Montgomery Form with B=1 and Their Low Order Torsion

This paper proves that the Montgomery form elliptic curves that are cheaply transformable into short Weierstrass form by a simple change of variables (x, y) 7→ (x+α, y) (instead of a more general affine change of variables) are precisely the curves with B = 1. The points of order 2 and 4 on these curves are described, and it is observed that the x-coordinates of these points are consecutive fie...

متن کامل

Elliptic Curves and Their Torsion

2 Elliptic Curves and Maps Between Them 2 2.1 The Group Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Weierstrass Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Maps Between Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Dual Isogenies . . . . . . . . . . . . . . ....

متن کامل

Non-Abelian Zeta Functions for Elliptic Curves

In this paper, new local and global non-abelian zeta functions for elliptic curves are defined using moduli spaces of semi-stable bundles. To understand them, we also introduce and study certain refined Brill-Noether locus in the moduli spaces. Examples of these new zeta functions and a justification of using only semi-stable bundles are given too. We end this paper with an appendix on the so-c...

متن کامل

The Geometry of Elliptic Curves over Finite Fields

We first provide an overview of the basic results in the geometry of elliptic curves, introducing the Picard Group, Weierstrass Equations, and Isogenies. This is followed by a discussion of the structure of m-torsion points on an elliptic curve, introducing such tools as the Weil pairing and the l-adic Tate module. The paper culminates in a theorem counting the rational points on an elliptic cu...

متن کامل

The Discrete Logarithm Problem on the p-torsion Subgroup of Elliptic Curves

An ongoing challenge in cryptography is to find groups in which the DLP is computationally infeasible, that is, for which the best known attack is exponential in log(N). Such a group can be used as the setting for many cryptographic protocols, from Diffie-Hellman key exchange to El Gamal encryption ([14], 159). The most prominent example, first proposed in 1985, is a subgroup of points of an el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005