Age-Dependent Degeneration of Mature Dentate Gyrus Granule Cells Following NMDA Receptor Ablation
نویسندگان
چکیده
N-methyl-D-aspartate receptors (NMDARs) in all hippocampal areas play an essential role in distinct processes of memory formation as well as in sustaining cell survival of postnatally generated neurons in the dentate gyrus (DG). In contrast to the beneficial effects, over-activation of NMDARs has been implicated in many acute and chronic neurological diseases, reason why therapeutic approaches and clinical trials involving receptor blockade have been envisaged for decades. Here we employed genetically engineered mice to study the long-term effect of NMDAR ablation on selective hippocampal neuronal populations. Ablation of either GluN1 or GluN2B causes degeneration of the DG. The neuronal demise affects mature neurons specifically in the dorsal DG and is NMDAR subunit-dependent. Most importantly, the degenerative process exacerbates with increasing age of the animals. These results lead us to conclude that mature granule cells in the dorsal DG undergo neurodegeneration following NMDAR ablation in aged mouse. Thus, caution needs to be exerted when considering long-term administration of NMDAR antagonists for therapeutic purposes.
منابع مشابه
Beneficial effect of Boswellia serrata gum resin on spatial learning and the dendritic tree of dentate gyrus granule cells in aged rats
Objective: The hippocampal formation, particularly the dentate gyrus (DG), shows age-related morphological changes that could cause memory decline. It is indicated that Boswellia resins attenuates memory deficits and the major component of Boswellia serrata (Bs) gum resin, beta boswellic acid increased neurite outgrowth and branching in hippocampal neurons. This study was designed to investigat...
متن کاملThe Effect of Paxilline on Early Alterations of Electrophysiological Properties of Dentate Gyrus Granule Cells in Pilocarpine-Treated Rats
The dentate gyrus of hippocampus has long been considered as a focal point for studies on mechanisms responsible for the development of temporal lobe epilepsy (TLE). Change in intrinsic properties of dentate gyrus granule cells (GCs) has been considered as an important factor responsible in temporal lobe seizures. In this study, we evaluated the intrinsic properties of GCs, during acute phase o...
متن کاملThe Effect of Paxilline on Early Alterations of Electrophysiological Properties of Dentate Gyrus Granule Cells in Pilocarpine-Treated Rats
The dentate gyrus of hippocampus has long been considered as a focal point for studies on mechanisms responsible for the development of temporal lobe epilepsy (TLE). Change in intrinsic properties of dentate gyrus granule cells (GCs) has been considered as an important factor responsible in temporal lobe seizures. In this study, we evaluated the intrinsic properties of GCs, during acute phase o...
متن کاملNMDA-dependent currents in granule cells of the dentate gyrus contribute to induction but not permanence of kindling.
Single-electrode voltage-clamp techniques and bath application of the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovaleric acid (APV) were used to study the time course of seizure-induced alterations in NMDA-dependent synaptic currents in granule cells of the dentate gyrus in hippocampal slices from kindled and normal rats. In agreement with previous studies, granule cells...
متن کاملRegulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus.
The effects of afferent input and N-methyl-D-aspartate (NMDA) receptor activation on neurogenesis were examined in an intact system, the rat dentate gyrus, where neurons are naturally born in the adult. In the adult dentate gyrus, activation of NMDA receptors rapidly decreased the number of cells synthesizing DNA, whereas blockade of NMDA receptors rapidly increased the number of cells in the S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in molecular neuroscience
دوره 8 شماره
صفحات -
تاریخ انتشار 2015