Math 144 Notes: Riemannian Geometry

نویسنده

  • ARUN DEBRAY
چکیده

1. Manifolds: 1/7/14 1 2. Tangent and Cotangent Spaces: 1/9/14 3 3. Vector Fields, One-Forms, and Riemannian Metrics: 1/14/14 6 4. The Lie Bracket and Riemannian Connections: 1/16/14 8 5. Existence and Uniqueness of the Riemannian Connection: 1/21/14 10 6. Tensor Fields, Parallel Transport, and Holonomy: 1/23/14 13 7. The Riemann Curvature Tensor: 1/28/14 15 8. Flatness: 1/30/14 17 9. Symmetries of the Curvature Tensor: 2/4/14 19 10. Traces and Sectional Curvature: 2/6/14 21 11. The Second Bianchi Identity: 2/11/14 23 12. Models of Hyperbolic Space: 2/18/14 25 13. The Variational Theory of Geodesics: 2/20/14 27 14. The Jacobi Field Equation and the Exponential Map: 2/25/14 29 15. Uniqueness of Constant-Curvature Spaces: 2/27/14 30 16. The Hilbert-Einstein Action: 3/4/14 32 17. The Schwarzschild Solution: 3/6/14 35 18. The Maximally Extended Schwarzschild Metric: 3/11/14 35 19. Friedman-Robertson-Walker Spaces: 3/13/14 37

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on the Riemannian geometry of Lie groups

Lie groups occupy a central position in modern differential geometry and physics, as they are very useful for describing the continuous symmetries of a space. This paper is an expository article meant to introduce the theory of Lie groups, as well as survey some results related to the Riemannian geometry of groups admitting invariant metrics. In particular, a non-standard proof of the classific...

متن کامل

Lectures on Riemannian Geometry, Part II: Complex Manifolds

This is a set of introductory lecture notes on the geometry of complex manifolds. It is the second part of the course on Riemannian Geometry given at the MRI Masterclass in Mathematics, Utrecht, 2008. The first part was given by Prof. E. van den Ban, and his lectures notes can be found on the web-site of this course, http://www.math.uu.nl/people/ban/riemgeom2008/riemgeom2008.html. Topics that w...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Riemannian Geometry rough lecture notes Fall Term 2014 / 15

After recalling some background, we define Riemannian metrics and Riemannian manifolds. We analyze the basic tensorial operations that become available in the presence of a Riemannian metric. Then we construct the Levi-Civita connection, which is the basic " new " differential operator coming from such a metric. Background The purpose of this section is two–fold. On the one hand, we want to rel...

متن کامل

Integrable Equations and Their Evolutions Based on Intrinsic Geometry of Riemann Spaces

The intrinsic geometry of surfaces and Riemannian spaces will be investigated. It is shown that many nonlinear partial differential equations with physical applications and soliton solutions can be determined from the components of the relevant metric for the space. The manifolds of interest are surfaces and higher-dimensional Riemannian spaces. Methods for specifying integrable evolutions of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015