Transfer and Integration of T-DNA without Cell Injury in the Host Plant.

نویسندگان

  • J. Escudero
  • B. Hohn
چکیده

Agrobacterium colonizes plant cells via a gene transfer mechanism that results in plant tumorigenesis. Virulence (vir) genes are transcriptionally activated in the bacteria by plant metabolites released from the wound site. Hence, it is believed that agrobacteria use injuries to facilitate their entrance into the host plant and that the wounded state is required for plant cell competence for Agrobacterium-mediated gene delivery. However, our experiments using vir gene-activated bacteria sprayed onto tobacco plantlets demonstrated that cells in unwounded plants could also be efficiently transformed. The condition of the plant cells was monitored using [beta]-glucuronidase under the control of a wound-inducible promoter. Infection of leaf tissue is light dependent, and it is drastically reduced when abscisic acid is exogenously applied to the plant. Under these experimental conditions, stomatal opening seems to be used by Agrobacterium to circumvent the physical barrier of the cuticle. These results thus show that the proposed cellular responses evoked by wounding in higher plants are not essential for Agrobacterium-mediated transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Agrobacterium T-DNA integration: molecules and models.

Genetic transformation mediated by Agrobacterium involves the transfer of a DNA molecule (T-DNA) from the bacterium to the eukaryotic host cell, and its integration into the host genome. Whereas extensive work has revealed the biological mechanisms governing the production, Agrobacterium-to-plant cell transport and nuclear import of the Agrobacterium T-DNA, the integration step remains largely ...

متن کامل

Odyssey of agrobacterium T-DNA.

Agrobacterium tumefaciens, a plant pathogen, is characterized by the unique feature of interkingdom DNA transfer. This soil bacterium is able to transfer a fragment of its DNA, called T-DNA (transferred DNA), to the plant cell where T-DNA is integrated into the plant genome leading to "genetic colonization" of the host. The fate of T-DNA, its processing, transfer and integration, resembles the ...

متن کامل

The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation.

The genetic transformation of plants mediated by Agrobacterium tumefaciens represents an essential tool for both fundamental and applied research in plant biology. For a successful infection, culminating in the integration of its transferred DNA (T-DNA) into the host genome, Agrobacterium relies on multiple interactions with host-plant factors. Extensive studies have unraveled many of such inte...

متن کامل

Investigation of DNA Integration into Reproductive Organs Following Intramuscular Injection of DNA in Mice

Background: DNA immunization with plasmid DNA encoding bacterial, viral, parasitic, and tumor antigens has been reported to trigger protective immunity. The use of plasmid DNA vaccinations against many diseases has produced promising results in animal and human clinical trials; however, safety concerns about the use of DNA vaccines exist, such as the possibility of integration into the host gen...

متن کامل

PART I PREPARATION FOR JOURNEY Chemotaxis

Agrobacteriumtumefaciens, a plant pathogen, is characterizedby the unique feature of interkingdomDNA transfer. This soil bacterium is able to transfer a fragment of its DNA, called T-DNA (transferred DNA), to the plant cell where T-DNA is integrated into the plant genome leading to “genetic colonization”of the host. The fate of T-DNA, its processing, transfer and integration, resembles the jour...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 9 12  شماره 

صفحات  -

تاریخ انتشار 1997