Robust Independence-Based Causal Structure Learning in Absence of Adjacency Faithfulness
نویسندگان
چکیده
This paper presents an extension to the Conservative PC algorithm which is able to detect violations of adjacency faithfulness under causal sufficiency and triangle faithfulness. Violations can be characterized by pseudo-independent relations and equivalent edges, both generating a pattern of conditional independencies that cannot be modeled faithfully. Both cases lead to uncertainty about specific parts of the skeleton of the causal graph. This is modeled by an f-pattern. We proved that our Very Conservative PC algorithm is able to correctly learn the f-pattern. We argue that the solution also applies for the finite sample case if we accept that only strong edges can be identified. Experiments based on simulations show that the rate of false edge removals is significantly reduced, at the expense of uncertainty on the skeleton and a higher sensitivity for accidental correlations.
منابع مشابه
Conservative independence-based causal structure learning in absence of adjacency faithfulness
This paper presents an extension to the Conservative PC algorithm which is able to detect violations of adjacency faithfulness under causal sufficiency and triangle faithfulness. Violations can be characterized by pseudo-independent relations and equivalent edges, both generating a pattern of conditional independencies that cannot be modeled faithfully. Both cases lead to uncertainty about spec...
متن کاملLifted Representation of Relational Causal Models Revisited: Implications for Reasoning and Structure Learning
Maier et al. (2010) introduced the relational causal model (RCM) for representing and inferring causal relationships in relational data. A lifted representation, called abstract ground graph (AGG), plays a central role in reasoning with and learning of RCM. The correctness of the algorithm proposed by Maier et al. (2013a) for learning RCM from data relies on the soundness and completeness of AG...
متن کاملAdjacency-Faithfulness and Conservative Causal Inference
Most causal discovery algorithms in the literature exploit an assumption usually referred to as the Causal Faithfulness or Stability Condition. In this paper, we highlight two components of the condition used in constraint-based algorithms, which we call “Adjacency-Faithfulness” and “OrientationFaithfulness.” We point out that assuming Adjacency-Faithfulness is true, it is possible to test the ...
متن کاملLearning Identifiable Gaussian Bayesian Networks in Polynomial Time and Sample Complexity
Learning the directed acyclic graph (DAG) structure of a Bayesian network from observational data is a notoriously difficult problem for which many hardness results are known. In this paper we propose a provably polynomial-time algorithm for learning sparse Gaussian Bayesian networks with equal noise variance — a class of Bayesian networks for which the DAG structure can be uniquely identified ...
متن کاملOn Learning Causal Models from Relational Data
Many applications call for learning causal models from relational data. We investigate Relational Causal Models (RCM) under relational counterparts of adjacency-faithfulness and orientation-faithfulness, yielding a simple approach to identifying a subset of relational d-separation queries needed for determining the structure of an RCM using d-separation against an unrolled DAG representation of...
متن کامل