Quantum and classical superballistic transport in a relativistic kicked-rotor system.

نویسندگان

  • Qifang Zhao
  • Cord A Müller
  • Jiangbin Gong
چکیده

As an unusual type of anomalous diffusion behavior, (transient) superballistic transport is not well known but has been experimentally simulated recently. Quantum superballistic transport models to date are mainly based on connected sublattices which are constructed to have different properties. In this work, we show that both quantum and classical superballistic transport in the momentum space can occur in a simple periodically driven Hamiltonian system, namely, a relativistic kicked-rotor system with a nonzero mass term. The nonzero mass term essentially realizes a situation, now in the momentum space, in which two (momentum) sublattices with different dispersion relations (and hence different nature of on-site potential) are connected as a junction. It is further shown that the quantum and classical superballistic transport should occur under much different choices of the system parameters. The results are of interest to studies of anomalous transport, quantum and classical chaos, and the issue of quantum-classical correspondence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum diffusion in the quasiperiodic kicked rotor

– We study the mechanisms responsible for quantum diffusion in the quasiperiodic kicked rotor. We report experimental measurements of the diffusion constant on the atomic version of the system and develop a theoretical approach (based on the Floquet theorem) explaining the observations, especially the “sub-Fourier” character of the resonances observed in the vicinity of exact periodicity, i.e. ...

متن کامل

Quantum transport with cold atoms in time-dependent optical potentials: the role of quasi-momentum in the resonant dynamics of the atom–optics kicked rotor

We examine the effect of the initial atomic momentum distribution on the dynamics of the atom–optical realisation of the quantum kicked rotor. The atoms are kicked by a pulsed optical lattice, the periodicity of which implies that quasi–momentum is conserved in the transport problem. We study and compare experimentally and theoretically two resonant limits of the kicked rotor: in the vicinity o...

متن کامل

Evidence for a quantum-to-classical transition in a pair of coupled quantum rotors.

The understanding of how classical dynamics can emerge in closed quantum systems is a problem of fundamental importance. Remarkably, while classical behavior usually arises from coupling to thermal fluctuations or random spectral noise, it may also be an innate property of certain isolated, periodically driven quantum systems. Here, we experimentally realize the simplest such system, consisting...

متن کامل

The role of quasi-momentum in the resonant dynamics of the atom–optics kicked rotor

We examine the effect of the initial atomic momentum distribution on the dynamics of the atom–optical realisation of the quantum kicked rotor. The atoms are kicked by a pulsed optical lattice, the periodicity of which implies that quasi–momentum is conserved in the transport problem. We study and compare experimentally and theoretically two resonant limits of the kicked rotor: in the vicinity o...

متن کامل

Chaos and Localisation: Quantum Transport in Periodically Driven Atomic Systems

This thesis investigates quantum transport in the energy space of two paradigm systems of quantum chaos theory. These are highly excited hydrogen atoms subject to a microwave field, and kicked atoms which mimic the δ−kicked rotor model. Both of these systems show a complex dynamical evolution arising from the interaction with an external time-periodic driving force. In particular two quantum ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 90 2  شماره 

صفحات  -

تاریخ انتشار 2014