B-Spline Curves
ثبت نشده
چکیده
However, we cannot easily control the curve locally. That is, any change to an individual control point will cause changes in the curve along its full length. In addition, we cannot create a local cusp in the curve, that is, we cannot create a sharp corner unless we create it at the beginning or end of a curve where it joins another curve. Finally, it is not possible to keep the degree of the Bezier curve fixed while adding additional points; any additional points will automatically increase the degree of the curve.
منابع مشابه
Optimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves
In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...
متن کاملTENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE
In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...
متن کامل3D Reconstruction Using Cubic Bezier Spline Curves and Active Contours (Case Study)
Introduction 3D reconstruction of an object from its 2D cross-sections (slices) has many applications in different fields of sciences such as medical physics and biomedical engineering. In order to perform 3D reconstruction, at first, desired boundaries at each slice are detected and then using a correspondence between points of successive slices surface of desired object is reconstructed. Mate...
متن کاملDegree Elevation of Interval B-Spline Curves
O. Ismail, Senior Member, IEEE Abstract— This paper presents an efficient method for degree elevation of interval B-spline curves. The four fixed Kharitonov's polynomials (four fixed B-spline curves) associated with the original interval B-spline curve are obtained. The method is based on the matrix identity. The B-spline basis functions are represented as linear combinations of the B-splines o...
متن کاملThe Effect of Knot Modifications on the Shape of B-spline Curves
This paper is devoted to the shape control of B-spline curves achieved by the modification of one of its knot values. At first those curves are described along which the points of a B-spline curve move under the modification of a knot value. Then we show that the one-parameter family of k order B-spline curves obtained by modifying a knot value has an envelope which is also a B-spline curve of ...
متن کاملKnot modification of B-spline curves
The effect of knot modifications on the shape of B-spline and NURBS curves is discussed in this paper. Theoretical results include the description of the path of curve points, obtained by the modification of a knot value, and the examination of the one-parameter family of curves. It is shown that this family has an envelope which is a lower order B-spline or NURBS curve. Applying these results ...
متن کامل