Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation.

نویسندگان

  • W Q Qiu
  • D M Walsh
  • Z Ye
  • K Vekrellis
  • J Zhang
  • M B Podlisny
  • M R Rosner
  • A Safavi
  • L B Hersh
  • D J Selkoe
چکیده

Excessive cerebral accumulation of the 42-residue amyloid beta-protein (Abeta) is an early and invariant step in the pathogenesis of Alzheimer's disease. Many studies have examined the cellular production of Abeta from its membrane-bound precursor, including the role of the presenilin proteins therein, but almost nothing is known about how Abeta is degraded and cleared following its secretion. We previously screened neuronal and nonneuronal cell lines for the production of proteases capable of degrading naturally secreted Abeta under biologically relevant conditions and concentrations. The major such protease identified was a metalloprotease released particularly by a microglial cell line, BV-2. We have now purified and characterized the protease and find that it is indistinguishable from insulin-degrading enzyme (IDE), a thiol metalloendopeptidase that degrades small peptides such as insulin, glucagon, and atrial natriuretic peptide. Degradation of both endogenous and synthetic Abeta at picomolar to nanomolar concentrations was completely inhibited by the competitive IDE substrate, insulin, and by two other IDE inhibitors. Immunodepletion of conditioned medium with an IDE antibody removed its Abeta-degrading activity. IDE was present in BV-2 cytosol, as expected, but was also released into the medium by intact, healthy cells. To confirm the extracellular occurrence of IDE in vivo, we identified intact IDE in human cerebrospinal fluid of both normal and Alzheimer subjects. In addition to its ability to degrade Abeta, IDE activity was unexpectedly found be associated with a time-dependent oligomerization of synthetic Abeta at physiological levels in the conditioned media of cultured cells; this process, which may be initiated by IDE-generated proteolytic fragments of Abeta, was prevented by three different IDE inhibitors. We conclude that a principal protease capable of down-regulating the levels of secreted Abeta extracellularly is IDE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BRI2 regulates β-amyloid degradation by increasing levels of secreted insulin degrading enzyme (IDE)

Background: The British Precursor Protein (BRI2) influences Amyloid Precursor Protein metabolism. Results: BRI2 lowers β-amyloid peptide levels by increasing levels of secreted insulin degrading enzyme (IDE) in both cells and mice. Conclusion: BRI2 as a receptor protein regulates IDE levels and in turn promotes βamyloid degradation. Significance: Targeting the regulation of IDE may lead to new ...

متن کامل

تأثیر تزریق داخل بطنی متفورمین بر یادگیری و حافظه فضایی موش‌های آلزایمری مدل استرپتوزوسین

Background and objective: Insulin and its receptor are located in the central nervous system where it regulates many important processes such as neural proliferation, apoptosis, synaptic transmission, neuronal survival, synaptic plasticity, learning and memory. Alzheimer's disease (AD) is characterized by the accumulation of extracellular amyloid-β (Aβ) plaques, and intracellular aggregation of...

متن کامل

CALHM1 ion channel elicits amyloid-β clearance by insulin-degrading enzyme in cell lines and in vivo in the mouse brain.

Alzheimer's disease is characterized by amyloid-β (Aβ) peptide accumulation in the brain. CALHM1, a cell-surface Ca(2+) channel expressed in brain neurons, has anti-amyloidogenic properties in cell cultures. Here, we show that CALHM1 controls Aβ levels in vivo in the mouse brain through a previously unrecognized mechanism of regulation of Aβ clearance. Using pharmacological and genetic approach...

متن کامل

Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling.

Alzheimer's Disease (AD) is characterized by cerebral accumulation of beta-amyloid peptides (Abeta), which are proteolytically derived from beta-amyloid precursor protein (betaAPP). betaAPP metabolism is highly regulated via various signal transduction systems, e.g., several serine/threonine kinases and phosphatases. Several growth factors known to act via receptor tyrosine kinases also have be...

متن کامل

Enhanced Proteolysis of β-Amyloid in APP Transgenic Mice Prevents Plaque Formation, Secondary Pathology, and Premature Death

Converging evidence suggests that the accumulation of cerebral amyloid beta-protein (Abeta) in Alzheimer's disease (AD) reflects an imbalance between the production and degradation of this self-aggregating peptide. Upregulation of proteases that degrade Abeta thus represents a novel therapeutic approach to lowering steady-state Abeta levels, but the consequences of sustained upregulation in viv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 49  شماره 

صفحات  -

تاریخ انتشار 1998