In-vivo Imaging of Magnetic Fields Induced by Transcranial Direct Current Stimulation (tDCS) in Human Brain using MRI
نویسندگان
چکیده
Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique that applies mA currents at the scalp to modulate cortical excitability. Here, we present a novel magnetic resonance imaging (MRI) technique, which detects magnetic fields induced by tDCS currents. This technique is based on Ampere's law and exploits the linear relationship between direct current and induced magnetic fields. Following validation on a phantom with a known path of electric current and induced magnetic field, the proposed MRI technique was applied to a human limb (to demonstrate in-vivo feasibility using simple biological tissue) and human heads (to demonstrate feasibility in standard tDCS applications). The results show that the proposed technique detects tDCS induced magnetic fields as small as a nanotesla at millimeter spatial resolution. Through measurements of magnetic fields linearly proportional to the applied tDCS current, our approach opens a new avenue for direct in-vivo visualization of tDCS target engagement.
منابع مشابه
Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain
Functional magnetic resonance imaging (fMRI) of brain activation during transcranial electrical stimulation is used to provide insight into the mechanisms of neuromodulation and targeting of particular brain structures. However, the passage of current through the body may interfere with the concurrent detection of blood oxygen level-dependent (BOLD) signal, which is sensitive to local magnetic ...
متن کاملNon-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance
During the past .. years, non-invasive .rain stimulation has .ecome an emerging .eld in clinical neuroscience due to its capability to transiently modulate corticospinal excitability, motor and cognitive functions. .hereas transcranial magnetic stimulation has .een used e.tensively since more than t.o decades ago as a potential .neuromodulator., transcranial current stimulation .tCS. has more r...
متن کاملGyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad.
The spatial resolution of conventional transcranial direct current stimulation (tDCS) is considered to be relatively diffuse owing to skull dispersion. However, we show that electric fields may be clustered at distinct gyri/sulci sites because of details in tissue architecture/conductivity, notably cerebrospinal fluid (CSF). We calculated the cortical electric field/current density magnitude in...
متن کاملConsideration of Individual Brain Geometry and Anisotropy on the Effect of tDCS
Introduction: The response variability between subjects, which is one of the fundamental challenges facing transcranial direct current stimulation (tDCS), can be investigated by understanding how the current is distributed through the brain. This understanding can be obtained by means of computational methods utilizing finite element (FE) models. Materials and Methods: In this study, the effect...
متن کاملRepeated Transcranial Direct Current Stimulation (tDCS) on Methamphetamine Craving: a Randomized, Sham-Controlled Study
modulation of dorsolateral prefrontal cortex (DLPFC) activity using non-invasive brain stimulation, such as transcranial direct current stimulation (tDCS), enhanced the prospects of substance use disorders rehabilitation. Methods: we carried out a randomized sham-controlled clinical trial to assess the effect of repeated tDCS at DLPFC on drug craving in 30 abstinent male methamphetamine users. ...
متن کامل