Genomic and transcriptomic analyses of the tangerine pathotype of Alternaria alternata in response to oxidative stress
نویسندگان
چکیده
The tangerine pathotype of Alternaria alternata produces the A. citri toxin (ACT) and is the causal agent of citrus brown spot that results in significant yield losses worldwide. Both the production of ACT and the ability to detoxify reactive oxygen species (ROS) are required for A. alternata pathogenicity in citrus. In this study, we report the 34.41 Mb genome sequence of strain Z7 of the tangerine pathotype of A. alternata. The host selective ACT gene cluster in strain Z7 was identified, which included 25 genes with 19 of them not reported previously. Of these, 10 genes were present only in the tangerine pathotype, representing the most likely candidate genes for this pathotype specialization. A transcriptome analysis of the global effects of H2O2 on gene expression revealed 1108 up-regulated and 498 down-regulated genes. Expressions of those genes encoding catalase, peroxiredoxin, thioredoxin and glutathione were highly induced. Genes encoding several protein families including kinases, transcription factors, transporters, cytochrome P450, ubiquitin and heat shock proteins were found associated with adaptation to oxidative stress. Our data not only revealed the molecular basis of ACT biosynthesis but also provided new insights into the potential pathways that the phytopathogen A. alternata copes with oxidative stress.
منابع مشابه
Purification of Host- Specific Toxin from Iranian Isolates of Alternaria alternata, Causal Agent of Brown Spot Disease of Tangerine
Brown spot disease caused by Alternaria alternata (Fr.: Fr.) Keissl is a serious problem forproduction of tangerines and tangerine hybrids in Iran. The Tangerine pathotype causes brownspot disease on young leaves and immature fruits of limited varieties of mandarins and tangerines(Citrus. reticulata Blanco). Specificity in the interaction between tangerine and the pathogen isdetermined by a hos...
متن کاملStress Response and Pathogenicity of the Necrotrophic Fungal Pathogen Alternaria alternata
The production of host-selective toxins by the necrotrophic fungus Alternaria alternata is essential for the pathogenesis. A. alternata infection in citrus leaves induces rapid lipid peroxidation, accumulation of hydrogen peroxide (H2O2), and cell death. The mechanisms by which A. alternata avoids killing by reactive oxygen species (ROS) after invasion have begun to be elucidated. The ability t...
متن کاملCsn5 Is Required for the Conidiogenesis and Pathogenesis of the Alternaria alternata Tangerine Pathotype
The COP9 signalosome (CSN) is a highly conserved protein complex involved in the ubiquitin-proteasome system. Its metalloisopeptidase activity resides in subunit 5 (CSN5). Functions of csn5 in phytopathogenic fungi are poorly understood. Here, we knocked out the csn5 ortholog (Aacsn5) in the tangerine pathotype of Alternaria alternata. The ΔAacsn5 mutant showed a moderately reduced growth rate ...
متن کاملHow the Pathogenic Fungus Alternaria alternata Copes with Stress via the Response Regulators SSK1 and SHO1
The tangerine pathotype of Alternaria alternata is a necrotrophic fungal pathogen causing brown spot disease on a number of citrus cultivars. To better understand the dynamics of signal regulation leading to oxidative and osmotic stress response and fungal infection on citrus, phenotypic characterization of the yeast SSK1 response regulator homolog was performed. It was determined that SSK1 res...
متن کاملHorizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus.
The tomato pathotype of Alternaria alternata produces host-specific AAL toxin and causes Alternaria stem canker on tomato. A polyketide synthetase (PKS) gene, ALT1, which is involved in AAL toxin biosynthesis, resides on a 1.0-Mb conditionally dispensable chromosome (CDC) found only in the pathogenic and AAL toxin-producing strains. Genomic sequences of ALT1 and another PKS gene, both of which ...
متن کامل