0 60 50 20 v 1 5 M ay 2 00 6 Stone spectra of finite von Neumann algebras of type I n Hans

نویسنده

  • Hans F. de Groote
چکیده

In this paper, we clarify the structure of the Stone spectrum of an arbitrary finite von Neumann algebra R of type In. The main tool for this investigation is a generalized notion of rank for projections in von Neumann algebras of this type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 50 90 20 v 1 1 1 Se p 20 05 Observables I : Stone Spectra

In this work we discuss the notion of observable both quantum and classical from a new point of view. In classical mechanics, an observable is represented as a function (measurable, continuous or smooth), whereas in (von Neumann’s approach to) quantum physics, an observable is represented as a bonded selfadjoint operator on Hilbert space. We will show in part II of this work that there is a com...

متن کامل

Nonlinear $*$-Lie higher derivations on factor von Neumann algebras

Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.

متن کامل

m at h . FA ] 1 5 M ay 2 00 0 BANACH EMBEDDING PROPERTIES OF NON - COMMUTATIVE L p - SPACES

Let N and M be von Neumann algebras. It is proved that L p (N) does not Banach embed in L p (M) for N infinite, M finite, 1 ≤ p < 2. The following considerably stronger result is obtained (which implies this, since the Schatten p-class Cp embeds in L p (N) for N infinite). Theorem. Let 1 ≤ p < 2 and let X be a Banach space with a spanning set (x ij) so that for some C ≥ 1, (i) any row or column...

متن کامل

ar X iv : 0 81 1 . 04 21 v 1 [ qu an t - ph ] 4 N ov 2 00 8 QUANTUM ERROR CORRECTION ON INFINITE - DIMENSIONAL HILBERT SPACES

We present a generalization of quantum error correction to infinite-dimensional Hilbert spaces. The generalization yields new classes of quantum error correcting codes that have no finite-dimensional counterparts. The error correction theory we develop begins with a shift of focus from states to algebras of observables. Standard subspace codes and subsystem codes are seen as the special case of...

متن کامل

ar X iv : 0 71 1 . 14 20 v 1 [ m at h . O A ] 9 N ov 2 00 7 Finite - dimensional Hopf C - bimodules and C - pseudo - multiplicative unitaries

Finite quantum groupoids can be described in many equivalent ways [8, 11, 16]: In terms of the weak Hopf C -algebras of Böhm, Nill, and Szlachányi [2] or the finite-dimensional Hopf-von Neumann bimodules of Vallin [14], and in terms of finite-dimensional multiplicative partial isometries [4] or the finite-dimensional pseudo-multiplicative unitaries of Vallin [15]. In this note, we show that in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006