Precipitation Mediates the Response of Carbon Cycle to Rising Temperature in the Mid-to-High Latitudes of the Northern Hemisphere
نویسندگان
چکیده
Over the past decades, rising air temperature has been accompanied by changes in precipitation. Despite relatively robust literature on the temperature sensitivity of carbon cycle at continental to global scales, less is known about the way this sensitivity is affected by precipitation. In this study we investigate how precipitation mediates the response of the carbon cycle to warming over the mid-to-high latitudes in the Northern Hemisphere (north of 30 °N). Based on atmospheric CO2 observations at Point Barrow (BRW) in Alaska, satellite-derived NDVI (a proxy of vegetation productivity), and temperature and precipitation data, we analyzed the responses of carbon cycle to temperature change in wet and dry years (with precipitation above or below the multiyear average). The results suggest that, over the past three decades, the net seasonal atmospheric CO2 changes at BRW were significantly correlated with temperature in spring and autumn, yet only weakly correlated with temperature and precipitation during the growing season. We further found that responses of the net CO2 changes to warming in spring and autumn vary with precipitation levels, with the absolute temperature sensitivity in wet years roughly twice that in dry years. The analyses of NDVI and climate data also identify higher sensitivity of vegetation growth to warming in wet years for the growing season, spring and summer. The different temperature sensitivities in wet versus dry years probably result from differences in soil moisture and/or nutrient availability, which may enhance (inhibit) the responsiveness of carbon assimilation and/or decomposition to warming under high (low) precipitation levels. The precipitation-mediated response of the terrestrial carbon cycle to warming reported here emphasizes the important role of precipitation in assessing the temporal variations of carbon budgets in the past as well as in the future. More efforts are required to reduce uncertainty in future precipitation projections, and to better represent the nonlinearity of carbon cycle responses to climate in current state-of-the-art land surface models.
منابع مشابه
Climate response of direct radiative forcing of anthropogenic black carbon
[1] The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be external...
متن کامل"Divergence problem" in estimating temperature based on tree rings (Case study: Juniper mountainous habitats in northern Kerman province)
Introduction The study of tree rings is one of the most widely used methods of climate reconstruction for centuries and millennia, but the occurrence of climatic anomalies such as global warming in recent decades has caused divergence problem in the series of tree rings in some areas. Which challenges the ability of this proxy to regenerate the climate. The “divergence problem” is the differen...
متن کاملSolar Latitudinal Distribution of Solar Flares around the Sun and Their Association with Forbush Decreases during the Period of 1986 to 2003
Solar flare events of high importance were utilised to study solar latitudinal frequency distribution of the solar flares in northern and southern hemisphere for the solar cycle 22 to recent solar cycle 23. A statistical analysis was performed to obtain their relationship with sudden storm commencement (SSCs) and Forbush decrease events (Fd) of cosmic ray intensity. An 11-year cyclic variation ...
متن کاملObserved contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014
Quantifying and attributing the phenological changes in snow cover are essential for meteorological, hydrological, ecological, and societal implications. However, snow cover phenology changes have not been well documented. Evidence from multiple satellite and reanalysis data from 2001 to 2014 points out that the snow end date (De) advanced by 5.11 (±2.20) days in northern high latitudes (52-75°...
متن کاملResults of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget
A set of coupled ocean-atmosphere(-vegetation) simulations using state of the art climate models is now available for the Last Glacial Maximum (LGM) and the MidHolocene (MH) through the second phase of the Paleoclimate Modeling Intercomparison Project (PMIP2). Here we quantify the latitudinal shift of the location of the Intertropical Convergence Zone (ITCZ) in the tropical regions during borea...
متن کامل