Caudal granular insular cortex is sufficient and necessary for the long-term maintenance of allodynic behavior in the rat attributable to mononeuropathy.

نویسندگان

  • Alexander M Benison
  • Serhiy Chumachenko
  • Jacqueline A Harrison
  • Steven F Maier
  • Scott P Falci
  • Linda R Watkins
  • Daniel S Barth
چکیده

Mechanical allodynia, the perception of innocuous tactile stimulation as painful, is a severe symptom of chronic pain often produced by damage to peripheral nerves. Allodynia affects millions of people and remains highly resistant to classic analgesics and therapies. Neural mechanisms for the development and maintenance of allodynia have been investigated in the spinal cord, brainstem, thalamus, and forebrain, but manipulations of these regions rarely produce lasting effects. We found that long-term alleviation of allodynic manifestations is produced by discreetly lesioning a newly discovered somatosensory representation in caudal granular insular cortex (CGIC) in the rat, either before or after a chronic constriction injury of the sciatic nerve. However, CGIC lesions alone have no effect on normal mechanical stimulus thresholds. In addition, using electrophysiological techniques, we reveal a corticospinal loop that could be the anatomical source of the influence of CGIC on allodynia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caudal Granular Insular Cortex and the Maintenance of Allodynic behavior in the Rat

........................................................................................................4 Introduction.....................................................................................................5 Methods.........................................................................................................7 Somatosensory Evoked Potential Mapping...........................

متن کامل

Catecholamine Contents of Different Region of Adult Rat Brain Are Altered Following Short and Long-term Exposures to Pb+2

Catecholamine is a group of neurotransmitters that is believed to be responsible for the normal function of animal brain. Physiological and behavioral changes of human body have been reported due to the damage of the brain function following lead exposure. Due to the assumption of lead disposal in brain tissue with two year for its half-life, which results in alteration of brain function, we in...

متن کامل

Catecholamine Contents of Different Region of Adult Rat Brain Are Altered Following Short and Long-term Exposures to Pb+2

Catecholamine is a group of neurotransmitters that is believed to be responsible for the normal function of animal brain. Physiological and behavioral changes of human body have been reported due to the damage of the brain function following lead exposure. Due to the assumption of lead disposal in brain tissue with two year for its half-life, which results in alteration of brain function, we in...

متن کامل

Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity

Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...

متن کامل

Chronic Ritalin Administration during Adulthood Increases Serotonin Pool in Rat Medial Frontal Cortex

Background: Ritalin has high tendency to be abused. It has been the main indication to control attention deficit hyperactivity disorder. The college students may seek for it to improve their memory, decrease the need for sleep (especially during exams), which at least partially, can be related to serotonergic system. Therefore, it seems worthy to evaluate the effect of Ritalin intake on mature ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 17  شماره 

صفحات  -

تاریخ انتشار 2011