Soft Robot Arm Inspired by the Octopus

نویسندگان

  • Cecilia Laschi
  • Matteo Cianchetti
  • Barbara Mazzolai
  • Laura Margheri
  • Maurizio Follador
  • Paolo Dario
چکیده

The octopus is a marine animal whose body has no rigid structures. It has eight arms composed of a peculiar muscular structure, named a muscular hydrostat. The octopus arms provide it with both locomotion and grasping capabilities, thanks to the fact that their stiffness can change over a wide range and can be controlled through combined contractions of the muscles. The muscular hydrostat can better be seen as a modifiable skeleton. Furthermore, the morphology the arms and the mechanical characteristics of their tissues are such that the interaction with the environment (i.e., water) is exploited to simplify control. Thanks to this effective mechanism of embodied intelligence, the octopus can control a very high number of degrees of freedom, with relatively limited computing resources. From these considerations, the octopus emerges as a good model for embodied intelligence and for soft robotics. The prototype of a robot arm has been built based on an artificial muscular hydrostat inspired to the muscular hydrostat of the Octopus vulgaris. The prototype presents the morphology of the biological model and the broad arrangement of longitudinal and transverse muscles. Actuation is obtained with cables (longitudinally) and with shape memory alloy springs (transversally). The robot arm combines contractions and it can show the basic movements of the octopus arm, like elongation, shortening and bending, in water. © Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2012

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm

The behaviors of the animals or embodied agents are characterized by the dynamic coupling between the brain, the body, and the environment. This implies that control, which is conventionally thought to be handled by the brain or a controller, can partially be outsourced to the physical body and the interaction with the environment. This idea has been demonstrated in a number of recently constru...

متن کامل

Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot.

The octopus is an interesting model for the development of soft robotics, due to its high deformability, dexterity and rich behavioural repertoire. To investigate the principles of octopus dexterity, we designed an eight-arm soft robot and evaluated its performance with focused experiments. The OCTOPUS robot presented here is a completely soft robot, which integrates eight arms extending in rad...

متن کامل

Design and Development of a Soft Actuator for a Robot Inspired by the Octopus Arm

The octopus arm presents peculiar features, like the capability of bending in all directions, producing fast elongations, and varying its stiffness. Such features are very attractive from a robotics point of view. In the octopus, these unique motor capabilities are given by the peculiar muscular structure of the octopus arm, named muscular hydrostat, that creates a sort of antagonistic mechanis...

متن کامل

An octopus-bioinspired solution to movement and manipulation for soft robots.

Soft robotics is a challenging and promising branch of robotics. It can drive significant improvements across various fields of traditional robotics, and contribute solutions to basic problems such as locomotion and manipulation in unstructured environments. A challenging task for soft robotics is to build and control soft robots able to exert effective forces. In recent years, biology has insp...

متن کامل

A new bio-inspired, antagonistically actuated and stiffness controllable manipulator

Robotic manipulators can be divided into different classes, including discrete, serpentine and continuum robots [1]. Most robots in use today have a number of discrete and usually rigid links connected by simple joints. Our work though has been inspired by biology [2], [3] specifically by the octopus, with its soft tentacles and virtually infinite number of degrees of freedom (DoFs). Biological...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced Robotics

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2012