SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation

نویسندگان

  • Xiaoyu Zhang
  • Nicole A Spiegelman
  • Ornella D Nelson
  • Hui Jing
  • Hening Lin
چکیده

The Ras family of GTPases are important in cell signaling and frequently mutated in human tumors. Understanding their regulation is thus important for studying biology and human diseases. Here, we report that a novel posttranslational mechanism, reversible lysine fatty acylation, regulates R-Ras2, a member of the Ras family. SIRT6, a sirtuin with established tumor suppressor function, regulates the lysine fatty acylation of R-Ras2. In mouse embryonic fibroblasts (MEFs), Sirt6 knockout (KO) increased R-Ras2 lysine fatty acylation. Lysine fatty acylation promotes the plasma membrane localization of R-Ras2 and its interaction with phosphatidylinositol 3-kinase PI3K, leading to activated Akt and increased cell proliferation. Our study establishes lysine fatty acylation as a previously unknown mechanism that regulates the Ras family of GTPases and provides an important mechanism by which SIRT6 functions as a tumor suppressor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a

Ras proteins play vital roles in numerous biological processes and Ras mutations are found in many human tumors. Understanding how Ras proteins are regulated is important for elucidating cell signaling pathways and identifying new targets for treating human diseases. Here we report that one of the K-Ras splice variants, K-Ras4a, is subject to lysine fatty acylation, a previously under-studied p...

متن کامل

SIRT2 and lysine fatty acylation regulate the oncogenic activity of K-Ras4a

12 Ras proteins play vital roles in numerous biological processes and Ras mutations are found in many 13 human tumors. Understanding how Ras proteins are regulated is important for elucidating cell signaling 14 pathways and identifying new targets for treating human diseases. Here we report that one of the K-Ras 15 splice variants, K-Ras4a, is subject to lysine fatty acylation, a previously und...

متن کامل

Identifying the functional contribution of the defatty-acylase activity of SIRT6

Mammalian sirtuin 6 (SIRT6) exhibits many pivotal functions and multiple enzymatic activities, but the contribution of each activity to the various functions is unclear. We identified a SIRT6 mutant (G60A) that possesses efficient defatty-acylase activity but has substantially decreased deacetylase activity in vitro and no detectable deacetylase activity in cells. The G60A mutant has a decrease...

متن کامل

HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2

The smallest histone deacetylase (HDAC) and the only class IV HDAC member, HDAC11, is reported to regulate immune activation and tumorigenesis, yet its physiological function is largely unknown. Here we identify HDAC11 as an efficient lysine defatty-acylase that is >10,000-fold more efficient than its deacetylase activity. Through proteomics studies, we identified SHMT2 as a defatty-acylation s...

متن کامل

Lysine fatty acylation promotes lysosomal targeting of TNF-α

Tumor necrosis factor-α (TNF-α) is a proinflammation cytokine secreted by various cells. Understanding its secretive pathway is important to understand the biological functions of TNF-α and diseases associated with TNF-α. TNF-α is one of the first proteins known be modified by lysine fatty acylation (e.g. myristoylation). We previously demonstrated that SIRT6, a member of the mammalian sirtuin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017