On the expansion of the pentatricopeptide repeat gene family in plants.
نویسندگان
چکیده
Pentatricopeptide repeat (PPR) proteins form a huge family in plants (450 members in Arabidopsis and 477 in rice) defined by tandem repetitions of characteristic sequence motifs. Some of these proteins have been shown to play a role in posttranscriptional processes within organelles, and they are thought to be sequence-specific RNA-binding proteins. The origins of this family are obscure as they are lacking from almost all prokaryotes, and the spectacular expansion of the family in land plants is equally enigmatic. In this study, we investigate the growth of the family in plants by undertaking a genome-wide identification and comparison of the PPR genes of 3 organisms: the flowering plants Arabidopsis thaliana and Oryza sativa and the moss Physcomitrella patens. A large majority of the PPR genes in each of the flowering plants are intron less. In contrast, most of the 103 PPR genes in Physcomitrella are intron rich. A phylogenetic comparison of the PPR genes in all 3 species shows similarities between the intron-rich PPR genes in Physcomitrella and the few intron-rich PPR genes in higher plants. Intron-poor PPR genes in all 3 species also display a bias toward a position of their introns at their 5' ends. These results provide compelling evidence that one or more waves of retrotransposition were responsible for the expansion of the PPR gene family in flowering plants. The differing numbers of PPR proteins are highly correlated with differences in organellar RNA editing between the 3 species.
منابع مشابه
Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants.
The pentatricopeptide repeat (PPR) protein family is highly expanded in terrestrial plants. Arabidopsis contains 450 PPR genes, which represents 2% of the total protein-coding genes. PPR proteins are eukaryote-specific RNA-binding proteins implicated in multiple aspects of RNA metabolism of organellar genes. Most PPR proteins affect a single or small subset of gene(s), acting in a gene-specific...
متن کاملP-70: Study of GTn-Repeat Expansion in Heme Oxygenase-1 Gene Promoter As Genetic Cause of Male Infertility
Background: The length of GT-repeats polymorphic region in the promoter of human Heme oxygenase-1 gene (HO-1) alters the level of its transcriptional activity in response to oxidative stresses. Decreased level of HO-1 protein in the seminal plasma has been reported to be associated with oligospermia and azoospermia in male infertility. This is the first study to investigate the association betw...
متن کاملPentatricopeptide repeat proteins constrain genome evolution in chloroplasts.
Higher plants encode hundreds of pentatricopeptide repeat proteins (PPRs) that are involved in several types of RNA processing reactions. Most PPR genes are predicted to be targeted to chloroplasts or mitochondria, and many are known to affect organellar gene expression. In some cases, RNA binding has been directly demonstrated, and the sequences of the cis-elements are known. In this work, we ...
متن کاملControversy remains: regulation of pH gradient across the thylakoid membrane.
17 Desloire, S. et al. (2003) Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep. 4, 588–594 18 Koizuka, N. et al. (2003) Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J. 34, 407–415 19 Kazama, T. and Tor...
متن کاملPentatricopeptide repeat proteins: a socket set for organelle gene expression.
Pentatricopeptide repeat (PPR) proteins are RNA-binding proteins that are particularly prevalent in terrestrial plants. Although the PPR protein family was only recognized eight years ago, it is already clear that these proteins have a range of essential functions in post-transcriptional processes (including RNA editing, RNA splicing, RNA cleavage and translation) within mitochondria and chloro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 25 6 شماره
صفحات -
تاریخ انتشار 2008