Blended Response Algorithms for Linear Fluctuation-Dissipation for Complex Nonlinear Dynamical Systems

نویسندگان

  • Rafail V. Abramov
  • Andrew J. Majda
چکیده

In a recent paper the authors developed and tested two novel computational algorithms for predicting the mean linear response of a chaotic dynamical system to small changes in external forcing via the fluctuation-dissipation theorem (FDT): the short-time FDT (ST-FDT), and the hybrid Axiom A FDT (hA-FDT). Unlike the earlier work in developing fluctuation-dissipation theorem-type computational strategies for chaotic nonlinear systems with forcing and dissipation, these two new methods are based on the theory of Sinai-Ruelle-Bowen probability measures, which commonly describe the equilibrium state of such dynamical systems. These two algorithms take into account the fact that the dynamics of chaotic nonlinear forced-dissipative systems often reside on chaotic fractal attractors, where the classical quasi-Gaussian (qG-FDT) approximation of the fluctuation-dissipation theorem often fails to produce satisfactory response prediction, especially in dynamical regimes with weak and moderate degrees of chaos. It has been discovered that the ST-FDT algorithm is an extremely precise linear response approximation for short response times, but numerically unstable for longer response times. On the other hand, the hA-FDT method is numerically stable for all times, but is less accurate for short times. Here we develop blended linear response algorithms, by combining accurate prediction of the ST-FDT method at short response times with numerical stability of qG-FDT and hA-FDT methods at longer response times. The new blended linear response algorithms are tested on the nonlinear Lorenz 96 model with 40 degrees of freedom, chaotic behavior, forcing, dissipation, and mimicking large-scale features of real-world geophysical models in a wide range of dynamical regimes varying from weakly to strongly chaotic, and to fully turbulent. The results below for the blended response algorithms have a high level of accuracy for the linear response of both mean state and variance throughout all the different chaotic regimes of the 40-mode model. These results point the way toward the potential use of the blended response algorithms in operational long-term climate change projection. AMS classification scheme numbers: 37N10,76F20,86A05,86A10 Submitted to: Nonlinearity Blended Response Algorithms for Linear Fluctuation-Dissipation 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Approximations and Tests of Linear Fluctuation-Response for Chaotic Nonlinear Forced-Dissipative Dynamical Systems

We develop and test two novel computational approaches for predicting the mean linear response of a chaotic dynamical system to small change in external forcing via the fluctuation-dissipation theorem. Unlike the earlier work in developing fluctuationdissipation theorem-type computational strategies for chaotic nonlinear systems with forcing and dissipation, the new methods are based on the the...

متن کامل

Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...

متن کامل

A simple framework to justify linear response theory

The use of linear response theory for forced dissipative stochastic dynamical systems through the fluctuation dissipation theorem is an attractive way to study climate change systematically among other applications. Here, a mathematically rigorous justification of linear response theory for forced dissipative stochastic dynamical systems is developed. The main results are formulated in an abstr...

متن کامل

Special Session 4: Effective Stochastic and Statistical Modeling of Multiscale Systems

The response of climate dynamics on the planetary scale to changes of various global physical parameters is an area which is being extensively studied in the contemporary atmosphere/ocean science. Recently, we developed and tested new computational algorithms for predicting the mean linear response of a chaotic dynamical system to small changes in external forcing via the fluctuation-dissipatio...

متن کامل

Multidimensional Measures of Response and Fluctuations in Stochastic Dynamical Systems.

A new class of experiments is proposed which involve multiple measurements combined with multiple perturbations of a nonlinear classical complex system. A family of multipoint n + m - 1 dimensional measures R(n,m) that provide complimentary information on complex systems is obtained by combining m non linear stimuli and n measurements. They represent the combined effect of causal response and n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007