OpenCL based machine learning labeling of biomedical datasets
نویسندگان
چکیده
In this paper, we propose a two-stage labeling method of large biomedical datasets through a parallel approach in a single GPU. Diagnostic methods, structures volume measurements, and visualization systems are of major importance for surgery planning, intra-operative imaging and image-guided surgery. In all cases, to provide an automatic and interactive method to label or to tag different structures contained into input data becomes imperative. Several approaches to label or segment biomedical datasets has been proposed to discriminate different anatomical structures in an output tagged dataset. Among existing methods, supervised learning methods for segmentation have been devised to easily analyze biomedical datasets by a non-expert user. However, they still have some problems concerning practical application, such as slow learning and testing speeds. In addition, recent technological developments have led to widespread availability of multi-core CPUs and GPUs, as well as new software languages, such as NVIDIA’s CUDA and OpenCL, allowing to apply parallel programming paradigms in conventional personal computers. Adaboost classifier is one of the most widely applied methods for labeling in the Machine Learning community. In a first stage, Adaboost trains a binary classifier from a set of pre-labeled samples described by a set of features. This binary classifier is defined as a weighted combination of weak classifiers. Each weak classifier is a simple decision function estimated on a single feature value. Then, at the testing stage, each weak classifier is independently applied on the features of a set of unlabeled samples. In this work, we propose an alternative representation of the Adaboost binary classifier. We use this proposed representation to define a new GPU-based parallelized Adaboost testing stage using OpenCL. We provide numerical experiments based on large available data sets and we compare our results to CPU-based strategies in terms of time and labeling speeds.
منابع مشابه
Adaboost GPU-based Classifier for Direct Volume Rendering
In volume visualization, the voxel visibitity and materials are carried out through an interactive editing of Transfer Function. In this paper, we present a two-level GPU-based labeling method that computes in times of rendering a set of labeled structures using the Adaboost machine learning classifier. In a pre-processing step, Adaboost trains a binary classifier from a pre-labeled dataset and...
متن کاملFast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملGuidelines to Select Machine Learning Scheme for Classification of Biomedical Datasets
Biomedical datasets pose a unique challenge to machine learning and data mining algorithms for classification because of their high dimensionality, multiple classes, noisy data and missing values. This paper provides a comprehensive evaluation of a set of diverse machine learning schemes on a number of biomedical datasets. To this end, we follow a four step evaluation methodology: (1) pre-proce...
متن کاملA memory-based learning approach to event extraction in biomedical texts
In this paper we describe the memory-based machine learning system that we submitted to the BioNLP Shared Task on Event Extraction. We modeled the event extraction task using an approach that has been previously applied to other natural language processing tasks like semantic role labeling or negation scope finding. The results obtained by our system (30.58 F-score in Task 1 and 29.27 in Task 2...
متن کامل