mRNA/protein sequence complementarity and its determinants: The impact of affinity scales
نویسندگان
چکیده
It has recently been demonstrated that the nucleobase-density profiles of mRNA coding sequences are related in a complementary manner to the nucleobase-affinity profiles of their cognate protein sequences. Based on this, it has been proposed that cognate mRNA/protein pairs may bind in a co-aligned manner, especially if unstructured. Here, we study the dependence of mRNA/protein sequence complementarity on the properties of the nucleobase/amino-acid affinity scales used. Specifically, we sample the space of randomly generated scales by employing a Monte Carlo strategy with a fitness function that depends directly on the level of complementarity. For model organisms representing all three domains of life, we show that even short searches reproducibly converge upon highly optimized scales, implying that the topology of the underlying fitness landscape is decidedly funnel-like. Furthermore, the optimized scales, generated without any consideration of the physicochemical attributes of nucleobases or amino acids, resemble closely the nucleobase/amino-acid binding affinity scales obtained from experimental structures of RNA-protein complexes. This provides support for the claim that mRNA/protein sequence complementarity may indeed be related to binding between the two. Finally, we characterize suboptimal scales and show that intermediate-to-high complementarity can be reached by substantially diverse scales, but with select amino acids contributing disproportionally. Our results expose the dependence of cognate mRNA/protein sequence complementarity on the properties of the underlying nucleobase/amino-acid affinity scales and provide quantitative constraints that any physical scales need to satisfy for the complementarity to hold.
منابع مشابه
Participation of miRNA in conditioning the incidence and modification of the course of FAP
In July 2008, the report considering identification of miRNA associated with regulation of APC protein expression level was published. Two types of MIRNA; miR135a and miR-135b, which are encoded by three genes, were described. Those genes are located on chromosomes 3, 12 and 1. miR135a and miR-135b interact with sequences 3 `UTR of mRNA of gene APC on the basis of incomplete complementarity and...
متن کاملRecombinant production and affinity purification of the FraC pore forming toxin using hexa-His tag and pET expression cassette
Objective(s): A newly-introduced protein toxin from a sea anemone, namely fragaceatoxin C is a protein with molecular weight of 20 kDa and pore-forming capability against cell membranes has recently grasped great attentions for its function. In this study, its coding sequence cloned as a fusion protein with His-tag for simple production and rapid purification. Materials and Methods: After PCR a...
متن کاملExpression and Purification of Neurotoxin-Associated Protein HA-33/A from Clostridium botulinum and Evaluation of Its Antigenicity
Background: Botulinum neurotoxin (BoNT) complexes consist of neurotoxin and neurotoxin-associated proteins. Hemagglutinin-33 (HA-33) is a member of BoNT type A (BoNT/A) complex. Considering the protective role of HA-33 in preservation of BoNT/A in gastrointestinal harsh conditions and also its adjuvant role, recombinant production of this protein is favorable. Thus in this study, HA-33 was expr...
متن کاملPurification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA
Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...
متن کاملComputational analysis of amino acids and their sidechain analogs in crowded solutions of RNA nucleobases with implications for the mRNA–protein complementarity hypothesis
Many critical processes in the cell involve direct binding between RNAs and proteins, making it imperative to fully understand the physicochemical principles behind such interactions at the atomistic level. Here, we use molecular dynamics simulations and 15 μs of sampling to study the behavior of amino acids and amino acid sidechain analogs in high-concentration aqueous solutions of standard RN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017