Debrided skin as a source of autologous stem cells for wound repair.
نویسندگان
چکیده
Major traumatic injuries to the body, such as large surface area burns, limit the availability of autologous stem cell populations for wound repair. This report demonstrates that even after severe burn trauma to the body, resident stem cells present within the subcutaneous adipose tissue survive and are available for therapeutic uses. Debrided skin from wounded areas contains subcutaneous adipose tissue and can yield approximately 1.5 × 10(5) to 2.5 × 10(5) cells per milliliter of tissue. This observation indicates that tissue, which is normally discarded, could be a valuable source of stem cells. Initial immunohistochemistry of the debrided tissue localized platelet-derived growth factor receptor beta(+) (PDGFR-β(+) ) cells to perivascular niches of vascular beds. It was immunophenotypically confirmed that the cell isolates are stem cells and designated as debrided skin adipose-derived stem cells (dsASCs). Gene expression analysis of stem cell specific transcripts showed that the dsASCs maintained their stemness over serial passages. Furthermore, dsASCs were able to differentiate into adipogenic, osteogenic, and vascular cell lineages. Finally, an in vivo excision wound model in athymic rats demonstrated that the dsASCs are engrafted within a wound bed after 12 days. These data provide the first evidence that subcutaneous adipose tissue from discarded burned skin contains a viable population of stem cells that can be used for wound repair and skin regenerative therapies.
منابع مشابه
Development of a Vascularized Skin Construct Using Adipose-Derived Stem Cells from Debrided Burned Skin
Large body surface area burns pose significant therapeutic challenges. Clinically, the extent and depth of burn injury may mandate the use of allograft for temporary wound coverage while autografts are serially harvested from the same donor areas. The paucity of donor sites in patients with burns involving large surface areas highlights the need for better skin substitutes that can achieve earl...
متن کاملFacts about Stem Cells and Importance of Them
Stem cells are undifferentiated biological cells that can differentiate into specialized cells and can divide (through mitosis) to produce more stem cells. They are found in multicellular organisms. In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In ad...
متن کاملApplication and Assessment of Allogeneic Fibroblasts for Cell Therapy
Background and Objective: In recent years, due to increasing number of patients with non-healing skin ulcers, skin substitutes have been used. Skin substitutes contain living cells causing faster and more effective wound healing. Therefore, research on the use of autologous and allogeneic cells such as fibroblasts in skin substitutes has attracted attentions. However, there are...
متن کاملReview Paper: Application of Hair Follicle Bulge Stem Cells in Wound Healing
Despite the significant advances in regenerative medicine, wound healing has remained a challenging clinical problem. Skin is the largest human organ with many vital functions; therefore, any damage to its normal structure should be treated as soon as possible. Easy access to skin stem cells has created a lot of excitement in therapeutic applications. “Cell therapy” is considered a novel method...
متن کاملReview Paper: Adipose Tissue, Adipocyte Differentiation, and Variety of Stem Cells in Tissue Engineering and Regeneration
Human adipose tissue represents an abundant, practical and appealing source of donor tissue for autologous cell replacement. Recent findings have shown that stem cells within the stromalvascular fraction of adipose tissue display a multilineage developmental potential. Adipose tissue-derived stem cells can be differentiated towards adipogenic, osteogenic, chondrogenic,myogenic and neurogenic li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stem cells
دوره 29 8 شماره
صفحات -
تاریخ انتشار 2011