Design of 32 bit Parallel Processor Core for High Energy Efficiency using Instruction-Levels Dynamic Voltage Scaling Technique
نویسندگان
چکیده
This paper describes design of high energy efficiency 32 bit parallel processor core using instructtion-levels data gating and dynamic voltage scaling (DVS) techniques. We present instruction-levels data gating technique. We can control activation and switching activity of the function units in the proposed data technique. We present instruction-levels DVS technique without using DC-DC converter and voltage scheduler controlled by the operation system. We can control powers of the function units in the proposed DVS technique. The proposed instruction-levels DVS technique has the simple architecture than complicated DVS which is DC-DC converter and voltage scheduler controlled by the operation system and a hardware implementation is very easy. But, the energy efficiency of the proposed instruction-levels DVS technique having dual-power supply is similar to the complicated DVS which is DC-DC converter and voltage scheduler controlled by the operation system. We simulate the circuit simulation for running test program using Spectra. We selected reduced power supply to 0.667 times of the supplied power supply. The energy efficiency of the proposed 32 bit parallel processor core using instruction-levels data gating and DVS techniques can improve about 88.4% than that of the 32 bit parallel processor core without using those. The designed high energy efficiency 32 bit parallel processor core can utilize as the coprocessor processing massive data at high speed.
منابع مشابه
Green Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کاملAdaptive Gate-Level Voltage Scaling Using Dual Voltage Domino Logic
Power consumption is a growing problem in modern digital design, and due to the quadratic relationship between power consumption and supply voltage, significant low-power research has focused on reducing the supply voltage. Adaptive gate-level voltage scaling (AGVS) is a novel design technique which dynamically adjusts the supply voltage at the gate-level to maximize energy efficiency. We propo...
متن کاملA Performance/Energy Analysis and Optimization of Multi-Core Architectures with Voltage Scaling Techniques
In this paper, we develop asymptotic analysis and simulation models to better understand the characteristics of performance and energy consumption in a multi-core processor design in which dynamic voltage scaling is used. Our asymptotic model is derived using Amdahl’s law, Rent’s rule and power equations to derive the optimum number of cores and their voltage levels. Our model can predict the p...
متن کاملUltra-Low-Energy DSP Processor Design for Many-Core Parallel Applications
Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...
متن کاملA 0.3-2.6 TOPS/W precision-scalable processor for real-time large-scale ConvNets
A low-power precision-scalable processor for ConvNets or convolutional neural networks (CNN) is implemented in a 40nm technology. Its 256 parallel processing units achieve a peak 102GOPS running at 204MHz. To minimize energy consumption while maintaining throughput, this works is the first to both exploit the sparsity of convolutions and to implement dynamic precision-scalability enabling suppl...
متن کامل