Direct Product Decompositions of Lattices , Closures andRelation
نویسنده
چکیده
In this paper we study the direct product decompositions of closure operations and lattices of closed sets. We characterize the direct product decompositions of lattices of closed sets in terms of closure operations, and nd those decompositions of lattices which correspond to the decompositions of closures. If a closure on a nite set is represented by its implication base (i.e. a binary relation on the powerset), we construct a polynomial algorithms to nd its direct product decompositions. The main characterization theorem is also applied to deene direct product decompositions of relational database schemes and to nd out what properties of relational databases and schemes are preserved under the decompositions.
منابع مشابه
Direct product decompositions of lattices, closures and relation schemes
In this paper we study direct product decompositions of closure operations and lattices of closed sets. We characterize direct product decompositions of lattices of closed sets in terms of closure operations, and find those decompositions of lattices which correspond to the decompositions of closures. If a closure on a finite set is represented by its implication base (i.e. a binary relation on...
متن کاملLattices of Subautomata and Direct Sum Decompositions of Automata
The subject of this paper are general properties of direct sum decompositions of automata. Using certain properties of the lattice Sub(A) of subautomata of an automaton A and its Boolean part, lattices of direct sum congruences and direct sum decompositions of A are characterized. We show that every automaton A can be represented as a direct sum of direct sum indecomposable automata, and that t...
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملDirect Product Decompositions of Infinitely Distributive Lattices
Let α be an infinite cardinal. Let Tα be the class of all lattices which are conditionally α-complete and infinitely distributive. We denote by T ′ σ the class of all lattices X such that X is infinitely distributive, σ-complete and has the least element. In this paper we deal with direct factors of lattices belonging to Tα. As an application, we prove a result of Cantor-Bernstein type for latt...
متن کاملDirect decompositions of non-algebraic complete lattices
For a given complete lattice L, we investigate whether L can be decomposed as a direct product of directly indecomposable lattices. We prove that this is the case if every element of L is a join of join-irreducible elements and dually, thus extending to non-algebraic lattices a result of L. Libkin. We illustrate this by various examples and counterexamples.
متن کامل