Mean-Square and Asymptotic Stability of the Stochastic Theta Method

نویسنده

  • Desmond J. Higham
چکیده

Stability analysis of numerical methods for ordinary differential equations (ODEs) is motivated by the question “for what choices of stepsize does the numerical method reproduce the characteristics of the test equation?” We study a linear test equation with a multiplicative noise term, and consider mean-square and asymptotic stability of a stochastic version of the theta method. We extend some mean-square stability results in [Saito and Mitsui, SIAM. J. Numer. Anal., 33 (1996), pp. 2254–2267]. In particular, we show that an extension of the deterministic A-stability property holds. We also plot mean-square stability regions for the case where the test equation has real parameters. For asymptotic stability, we show that the issue reduces to finding the expected value of a parametrized random variable. We combine analytical and numerical techniques to get insights into the stability properties. For a variant of the method that has been proposed in the literature we obtain precise analytic expressions for the asymptotic stability region. This allows us to prove a number of results. The technique introduced is widely applicable, and we use it to show that a fully implicit method suggested by [Kloeden and Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, 1992] has an asymptotic stability extension of the deterministic A-stability property. We also use the approach to explain some numerical results reported in [Milstein, Platen, and Schurz, SIAM J. Numer. Anal., 35 (1998), pp. 1010–1019.]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Mean-square and Asymptotic Stability of Numerical Methods for Stochastic Ordinary Diierential Equations

Stability analysis of numerical methods for ordinary diierential equations is motivated by the question \for what choices of stepsize does the numerical method reproduce the characteristics of the test equation?" We study a linear test equation with a multiplicative noise term, and consider mean-square and asymptotic stability of a stochastic version of the Theta Method. We extend some mean-squ...

متن کامل

A-stability and Stochastic Mean-square Stability∗

This note extends and interprets a result of Saito and Mitsui [SIAM J. Numer. Anal., 33 (1996), pp. 2254–2267] for a method of Milstein. The result concerns mean-square stability on a stochastic differential equation test problem with multiplicative noise. The numerical method reduces to the Theta Method on deterministic problems. Saito and Mitsui showed that the deterministic A-stability prope...

متن کامل

Theta schemes for SDDEs with non-globally Lipschitz continuous coefficients

Keywords: Stochastic differential delay equation (SDDE) Split-step theta scheme Stochastic linear theta scheme Strong convergence rate Exponential mean square stability a b s t r a c t This paper establishes the boundedness, convergence and stability of the two classes of theta schemes, namely split-step theta (SST) scheme and stochastic linear theta (SLT) scheme, for stochastic differential de...

متن کامل

Exponential Mean-square Stability of Numerical Solutions to Stochastic Differential Equations

Positive results are proved here about the ability of numerical simulations to reproduce the exponentialmean-square stability of stochastic differential equations (SDEs). The first set of results applies under finite-time convergence conditions on the numerical method. Under these conditions, the exponential mean-square stability of the SDE and that of the method (for sufficiently small step si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2000