MATH 5707 Midterm 2

نویسنده

  • Sasha Pevzner
چکیده

Proof. Let n = |V |, and assume without loss of generality that |E| = n (else we could remove edges from G until |E| = n and apply the argument). Also assume WLOG that V ∩ E = ∅ (else, we can rename the vertices). Note that we must have n ≥ 3, since a simple graph with 2 or fewer vertices can have at most 1 edge. Now we seek a bijection f : V → E with each v ∈ V satisfying v / ∈ f(v). Construct a bipartite graph (G̃;V,E), where v ∈ V is adjacent to e ∈ E if and only if v / ∈ e. We seek a perfect matching, or simply an E-complete matching of G̃. First we note that since each e ∈ E has exactly 2 endpoints in G, it has exactly two elements of V which are not neighbors of e in G̃. That is, for each e ∈ E, we have degG̃(e) = n−2. In other words, |N({e})| = n−2 ≥ 1, since n ≥ 3. Thus, we have the Hall condition satisfied for subsets of E of size 1. Furthermore, we have that any nonempty subset P of E satisfies |N(P )| ≥ n− 2 and thus we have verified the Hall condition for all subsets of E with size ≤ n− 2. It remains to verify the Hall condition for subsets P of E with |P | = n− 1 and |P | = n. If |P | = n, then P = E, and we claim that N(P ) = V . Indeed, assume the contrary. Then there exists v ∈ V such that v is isolated

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Math 5707 : Graph Theory , Spring 2017 Midterm 2

1.2 Solution Proof. Let n = |V |. Note first that since |E| ≥ |V |, n can be neither 1 nor 2. Define a bipartite graph (H;V,E), where H is the simple graph with vertex set V (H) = E ∪V and edge set E (H) = {{v, e} | e ∈ E, v ∈ V \e}. (We WLOG assume that E ∩ V = ∅.) Thus, the edges in H connect each vertex v of G to the edges of G that do not contain v. A V -complete matching M in H would consi...

متن کامل

Math 5707 : Graph Theory , Spring 2017

1.1 Problem Fix a loopless multidigraphD = (V,A, φ). Let f : V → N be a configuration. Let h = ∑ f . Let n = |V |. Assume that n > 0. Let ` = (`1, `2, . . . , `k) be a legal sequence for f having length k ≥ ( n+ h− 1 n− 1 ) . Prove the following: (a) There exist legal sequences (for f) of arbitrary length. (b) Let q be a vertex of D such that for each vertex u ∈ V , there exists a path from u t...

متن کامل

Math 321: Real Variables Ii

Annoucements • Office = MATH 221 (Directly above the Mathematics Department Office.) • Email = [email protected] • Text = “Baby Rudin” – Principles of Mathematical Analysis 3/e by Walter Rudin • Course Website = “http://www.math.ubc.ca/∼feldman/m321/” • Topics: – Riemann-Stieltjes integral (§6) – Sequences & Series of functions (§7) – Power Series, Special Functions, Fourier Series (§8) – Ano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017