Extracellular adenosine modulates a volume-sensitive-like chloride conductance in immortalized rabbit DC1 cells.

نویسندگان

  • I Rubera
  • H Barrière
  • M Tauc
  • M Bidet
  • C Verheecke-Mauze
  • C Poujeol
  • B Cuiller
  • P Poujeol
چکیده

Cl(-) currents induced by cell swelling were characterized in an immortalized cell line (DC1) derived from rabbit distal bright convoluted tubule by the whole cell patch-clamp techniques and by (125)I(-) efflux experiments. Exposure of cells to a hypotonic shock induced outwardly rectifying Cl(-) currents that could be blocked by 0.1 mM 5-nitro-2-(3-phenylpropyl-amino)benzoic acid, 1 mM DIDS, and by 1 mM diphenylamine-2-carboxylate. (125)I(-) efflux experiments showed that exposure of the monolayer to a hypotonic medium increased (125)I(-) loss. Preincubation of cells with LaCl(3) or GdCl(3) prevented the development of the response. The addition of 10 microM adenosine to the bath medium activated outwardly rectifying whole cell currents similar to those recorded after hypotonic shock. This conductance was inhibited by the A(1)-receptor antagonist 8-cyclopentyl-1,3-diproxylxanthine (DPCPX), LaCl(3), or GdCl(3) and was activated by GTPgammaS. The selective A(1)-receptor agonist N(6)-cyclopentyladenosine (CPA) mimicked the effect of hypotonicity on (125)I(-) efflux. The CPA-induced increase of (125)I(-) efflux was inhibited by DPCPX and external application of LaCl(3) or GdCl(3). Adenosine also enhanced Mn(2+) influx across the apical membrane. Overall, the data show that DC1 cells possess swelling- and adenosine-activated Cl(-) conductances that share identical characteristics. The activation of both conductances involved Ca(2+) entry into the cell, probably via mechanosensitive Ca(2+) channels. The effects of adenosine are mediated via A(1) receptors that could mediate the purinergic regulation of the volume-sensitive Cl(-) conductance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of cAMP-dependent chloride channels in DC1 immortalized rabbit distal tubule cells in culture.

Cl- conductances were studied in an immortalized cell line (DC1) derived from rabbit distal bright convoluted tubule (DCTb). The DC1 clone was obtained after transfection of primary cultures of DCTb with pSV3 neo. RT-PCR experiments showed the presence of cystic fibrosis transmembrane conductance regulator (CFTR) mRNA in the DC1 cell line. Using the whole cell patch-clamp technique, we recorded...

متن کامل

Extracellular ATP increases [Ca(2+)](i) in distal tubule cells. II. Activation of a Ca(2+)-dependent Cl(-) conductance.

We characterized Cl(-) conductance activated by extracellular ATP in an immortalized cell line derived from rabbit distal bright convoluted tubule (DC1). (125)I(-) efflux experiments showed that ATP increased (125)I(-) loss with an EC(50) = 3 microM. Diphenylamine-2-carboxylate (10(-3) M) and NPPB (10(-4) M) abolished the (125)I(-) efflux. Preincubation with 10 microM 1, 2-bis(2-aminophenoxy)et...

متن کامل

Chloride currents in primary cultures of rabbit proximal and distal convoluted tubules.

Cl- conductances were studied in cultured rabbit proximal convoluted tubule (PCT) epithelial cells and compared with those measured in cultured distal bright convoluted tubule (DCTb) epithelial cells. Using the whole cell patch-clamp technique, three types of Cl- conductances were identified in DCTb cultured cells. These consisted of volume-sensitive, Ca2+-activated, and forskolin-activated Cl-...

متن کامل

Activation of a CFTR-mediated chloride current in a rabbit corneal epithelial cell line.

PURPOSE To determine whether there is gene expression and functional activity of cystic fibrosis transmembrane conductance regulator protein (CFTR) in an SV40-immortalized rabbit corneal epithelial cell line, tRCE. METHODS Both whole-cell and cell-attached patch-clamp techniques were used to examine the biophysical characteristics of the cAMP-dependent chloride current. The molecular identity...

متن کامل

Adenosine activates a2b receptors and enhances chloride secretion in kidney inner medullary collecting duct cells.

In the kidney, defects in the regulation of urine salt excretion can result in extracellular fluid volume expansion, leading to salt-sensitive hypertension. Previous studies have demonstrated that, when rats are maintained on a high sodium chloride (NaCl) diet, adenosine production increases in the renal medulla with parallel changes in adenosine receptor expression. These studies suggest that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 280 1  شماره 

صفحات  -

تاریخ انتشار 2001