Discrete-time bilateral teleoperation: modelling and stability analysis

نویسندگان

  • M. Tavakoli
  • A. Aziminejad
  • R. V. Patel
  • M. Moallem
چکیده

Discretisation of a stabilising continuous-time bilateral teleoperation controller for digital implementation may not necessarily lead to stable teleoperation. While previous research has focused on the question of passivity or stability of haptic interaction with a discretely simulated virtual wall, here the stability of master– slave teleoperation under discrete-time bilateral control is addressed. Stability regions are determined in the form of conditions involving the sampling period, control gains including the damping introduced by the controller and environment stiffness. Among the obtained stability conditions are lower and upper bounds on the controller damping in addition to upper bounds on the sampling period and the environment stiffness, implying that as the sampling period is increased, the maximum admissible stiffness of the environment with which a slave robot can stably interact is reduced. An outcome of the paper is a set of design guidelines in terms of selection of various control parameters and the sampling rate for stable teleoperation under discrete-time control. Because of the sampling period–environment stiffness tradeoff and the stability– transparency tradeoff, the obtained stability boundaries are of particular importance for hard-contact teleoperation or when the teleoperation system has near-ideal or ideal transparency. The results of the stability analysis are confirmed by a simulation study in which the bilateral controller is realised by z-domain transfer functions while the master, the slave and the environment are simulated in the s-domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delay-dependent stability for transparent bilateral teleoperation system: an LMI approach

There are two significant goals in teleoperation systems: Stability and performance. This paper introduces an LMI-based robust control method for bilateral transparent teleoperation systems in presence of model mismatch. The uncertainties in time delay in communication channel, task environment and model parameters of master-slave systems is called model mismatch. The time delay in communicatio...

متن کامل

Absolute Stability Analysis of Sampled-Data Scaled Bilateral Teleoperation Systems

Stability of a bilateral teleoperation system may be jeopardized by controller discretization, which has been shown to involve energy leaks. This paper proposes a novel approach to analyzing the absolute stability of sampled-data bilateral teleoperation systems consisting of discrete-time controllers and continuous-time master, slave, operator, and environment. The proposed stability analysis p...

متن کامل

Bilateral teleoperation control to improve transparency in stiff environment with time delay

This paper proposes a new bilateral control scheme to ensure both transparency and robust stability under unknown constant time delay in stiff environment. Furthermore, this method guaranties suitable performance and robust stability when transition occurs between soft and stiff environments. This framework is composed of an adaptive sliding mode controller and an adaptive impedance controller,...

متن کامل

Bilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control

This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...

متن کامل

Stability of Bilateral Teleoperation Systems: Effect of Sampled-data Control and Non-passivity or Strict-Passivity of Terminations

A bilateral teleoperation system comprises a human operator, a teleoperator, and an environment. The teleoperator consists of a master robot, a slave robot, their controllers, and a communication channel between the master and the slave. Since the exact models of the teleoperator’s terminations, namely the human operator and the environment, are typically unknown and/or time-varying, passivity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007