Coupled mode theory for resonant excitation of waveguiding structures

ثبت نشده
چکیده

Resonant coupling of light beams via high-index media or gratings to planar waveguiding structures are of interest for both applications and from a theoretical point of view. Coupled Mode theory (CMT) can give an accurate description of the coupling process in terms of relatively simple expressions involving often a large number of coupling parameters. In this paper it is shown, using time reversal and energy conservation how these parameters are interrelated. The evaluation of the remaining independent parameters is shown to be possible using a few re ̄ection and transmission coecients for incoming plane waves, including in the calculations, if present, the e€ect of the grating. Further, it is proved that under certain condition a grating coupler may show exactly 100% re ̄ection. Analytical expressions for the re ̄ected and transmitted beams and the amplitude distribution of the excited mode are given for the case of incoming Gaussian beams. A few applications of the theory and considerations on its applicability are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamiltonian formulation of coupled-mode theory in waveguiding structures.

We present a Hamiltonian formulation of coupled mode theory for scenarios in which the coupled modes are associated with different "parent structures," such as two nearby waveguides. The relativistic nature of the photon leads to the complication that not any set of orthonormal modes can be used as a basis if the associated amplitudes are to satisfy canonical commutation relations. This difficu...

متن کامل

Bloch surface wave structures for high sensitivity detection and compact waveguiding

Resonant propagating waves created on the surface of a dielectric multilayer stack, called Bloch surface waves (BSW), can be designed for high sensitivity monitoring of the adjacent refractive index as an alternative platform to the metal-based surface plasmon resonance (SPR) sensing. The resonant wavelength and polarization can be designed by engineering of the dielectric layers unlike the fix...

متن کامل

Modal Expansions and Orthogonal Complements in the Theory of Complex Media Waveguide Excitation by External Sources for Isotropic, Anisotropic, and Bianisotropic Media

A unified electrodynamic approach to the guided wave excitation by external sources in the waveguiding structures with bianisotropic media is developed. Effect of electric, magnetic, and magneto-electric losses in such media manifests itself in the special form of eigenmode orthogonality referred to as the quasi-orthogonality relation. It reflects the existence of the cross-power flow Pkl and l...

متن کامل

Design and Production of a Pneumatic Moving Exciter for Determination of Vibration Behavior of Structures in Variable Frequencies

Determination and analysis of vibration behavior of structures for at least first few natural frequencies and mode shapes needs several sensors to be connected at different non node points and exciting the structure at one point. Other method for determination of first few mode shapes is to excite several points of the structure at once and sensing the response from one point.  Both methods nee...

متن کامل

Ultraslow optical waveguiding in an atomic Bose-Einstein condensate.

We investigate waveguiding of ultraslow light pulses in an atomic Bose-Einstein condensate. We show that under the conditions of off-resonant electromagnetically induced transparency, waveguiding with a few ultraslow modes can be realized. The number of modes that can be supported by the condensate can be controlled by means of experimentally accessible parameters. Propagation constants and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000