Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry.
نویسندگان
چکیده
Desorption/ionization on porous silicon mass spectrometry (DIOS-MS) is a novel method for generating and analyzing gas-phase ions that employs direct laser vaporization. The structure and physicochemical properties of the porous silicon surfaces are crucial to DIOS-MS performance and are controlled by the selection of silicon and the electrochemical etching conditions. Porous silicon generation and DIOS signals were examined as a function of silicon crystal orientation, resistivity, etching solution, etching current density, etching time, and irradiation. Pre-and postetching conditions were also examined for their effect on DIOS signal as were chemical modifications to examine stability with respect to surface oxidation. Pore size and other physical characteristics were examined by scanning electron microscopy and Fourier transform infrared spectroscopy, and correlated with DIOS-MS signal. Porous silicon surfaces optimized for DIOS response were examined for their applicability to quantitative analysis, organic reaction monitoring, post-source decay mass spectrometry, and chromatography.
منابع مشابه
Laser desorption/ionization on porous silicon mass spectrometry for accurately determining the molecular weight distribution of polymers evaluated using a certified polystyrene standard.
Desorption/ionization on porous silicon-mass spectrometry (DIOS-MS) is a novel soft ionization MS technique that does not require any matrix reagent, ideally resulting in fewer obstructive peaks in the lower mass region. In this study, the etching conditions of porous silicon spots as an ionization platform of DIOS-MS were investigated for determining the molecular weight distribution (MWD) of ...
متن کاملDesorption/ionization on silicon nanowires.
Dense arrays of single-crystal silicon nanowires (SiNWs) have been used as a platform for laser desorption/ionization mass spectrometry of small molecules, peptides, protein digests, and endogenous and xenobiotic metabolites in biofluids. Sensitivity down to the attomole level has been achieved on the nanowire surfaces by optimizing laser energy, surface chemistry, nanowire diameter, length, an...
متن کاملDesorption/ionization on silicon for small molecules:a promising alternative to MALDI TOF.
A method has been developed for laser desorption/ionization of catecholamines from porous silicon. This methodology is particularly attractive for analysis of small molecules. MALDI TOF mass spectrometry, although a very sensitive technique, utilizes matrices that need to be mixed with the sample prior to their analysis. Each matrix produces its own background, particularly in the low-molecular...
متن کاملLaser Desorption/ionization Mass Spectrometry Using Tunable Nanoporous Structures
ABSTRACT The performance of porous silicon and cobalt glancing angle deposited (GLAD) thin films for matrix-free laser desorption/ionization-MS analysis of carbohydrates, peptides and drugs with molecular weights < 2,500 Dalton is presented. The performance of these films for selected peptides and small drugs detection is similar to the best reported for desorption/ionization on electrochemical...
متن کاملHigh surface area of porous silicon drives desorption of intact molecules.
The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation and surface morphology. The DIOS process is found to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 73 3 شماره
صفحات -
تاریخ انتشار 2001