Feature warping for robust speaker verification
نویسندگان
چکیده
We propose a novel feature mapping approach that is robust to channel mismatch, additive noise and to some extent, nonlinear effects attributed to handset transducers. These adverse effects can distort the short-term distribution of the speech features. Some methods have addressed this issue by conditioning the variance of the distribution, but not to the extent of conforming the speech statistics to a target distribution. The proposed target mapping method warps the distribution of a cepstral feature stream to a standardised distribution over a specified time interval. We evaluate a number of the enhancement methods for speaker verification, and compare them against a Gaussian target mapping implementation. Results indicate improvements of the warping technique over a number of methods such as Cepstral Mean Subtraction (CMS), modulation spectrum processing, and short-term windowed CMS and variance normalisation. This technique is a suitable feature post-processing method that may be combined with other techniques to enhance speaker recognition robustness under adverse conditions.
منابع مشابه
Comparative study of speaker verification techniques based on vector quantization, sphericity models and dynamic time warping∗
Three simple speaker verification techniques based on vector quantization, sphericity models and dynamic time warping, respectively, are developed and tested using the same experimental protocol. Two types of feature vectors, the linear prediction derived cepstral coefficients and the melfrequency cepstral coefficients are considered. The efficiency of the combination of the type of acoustic an...
متن کاملFeature and score normalization for speaker verification of cellular data
This paper presents some experiments with feature and score normalization for text-independent speaker verification of cellular data. The speaker verification system is based on cepstral features and Gaussian mixture models with 1024 components. The following methods, which have been proposed for feature and score normalization, are reviewed and evaluated on cellular data: cepstral mean subtrac...
متن کاملUsing Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملVariable print quality
In the literature, much research work has been done in the area of speaker verification. The developments include: different types of speaker verification techniques, methods for feature extraction, measures for telephone channel compensation, system robustness etc. In contrast, the problem of acoustic feature selection for speaker verification has been relatively neglected. Hence our aim is to...
متن کاملForensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach
We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics o...
متن کامل