Neural fields, spectral responses and lateral connections
نویسندگان
چکیده
This paper describes a neural field model for local (mesoscopic) dynamics on the cortical surface. Our focus is on sparse intrinsic connections that are characteristic of real cortical microcircuits. This sparsity is modelled with radial connectivity functions or kernels with non-central peaks. The ensuing analysis allows one to generate or predict spectral responses to known exogenous input or random fluctuations. Here, we characterise the effect of different connectivity architectures (the range, dispersion and propagation speed of intrinsic or lateral connections) and synaptic gains on spatiotemporal dynamics. Specifically, we look at spectral responses to random fluctuations and examine the ability of synaptic gain and connectivity parameters to induce Turing instabilities. We find that although the spatial deployment and speed of lateral connections can have a profound affect on the behaviour of spatial modes over different scales, only synaptic gain is capable of producing phase-transitions. We discuss the implications of these findings for the use of neural fields as generative models in dynamic causal modeling (DCM).
منابع مشابه
Spectral Estimation of Printed Colors Using a Scanner, Conventional Color Filters and applying backpropagation Neural Network
Reconstruction the spectral data of color samples using conventional color devices such as a digital camera or scanner is always of interest. Nowadays, multispectral imaging has introduced a feasible method to estimate the spectral reflectance of the images utilizing more than three-channel imaging. The goal of this study is to spectrally characterize a color scanner using a set of conventional...
متن کاملTopographic Receptive Fields and Patterned Lateral Interaction in a Self-Organizing Model of the Primary Visual Cortex
This article presents a self-organizing neural network model for the simultaneous and cooperative development of topographic receptive fields and lateral interactions in cortical maps. Both afferent and lateral connections adapt by the same Hebbian mechanism in a purely local and unsupervised learning process. Afferent input weights of each neuron self-organize into hill-shaped profiles, recept...
متن کاملA Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure
Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space. Several existing models of attention suggest that these effects arise from selective modulation of neural inputs. However, anatomical and physiological observations suggest that attentional modul...
متن کاملOcular Dominance and Patterned Lateral Connections in a Self-Organizing Model of the Primary Visual Cortex
A neural network model for the self-organization of ocular dominance and lateral connections from binocular input is presented. The self-organizing process results in a network where (1) afferent weights of each neuron organize into smooth hill-shaped receptive fields primarily on one of the retinas, (2) neurons with common eye preference form connected, intertwined patches, and (3) lateral con...
متن کاملDynamic causal modelling of lateral interactions in the visual cortex
This paper presents a dynamic causal model based upon neural field models of the Amari type. We consider the application of these models to non-invasive data, with a special focus on the mapping from source activity on the cortical surface to a single channel. We introduce a neural field model based upon the canonical microcircuit (CMC), in which neuronal populations are assigned to different c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 55 شماره
صفحات -
تاریخ انتشار 2011