Three-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: Simplified Kalman filter covariance forecasting and field application
نویسندگان
چکیده
[1] The Kalman filter data assimilation technique is applied to a distributed threedimensional soil moisture model for retrieval of the soil moisture profile in a 6 ha catchment using near-surface soil moisture measurements. A simplified Kalman filter covariance forecasting methodology is developed based on forecasting of the state correlations and imposed state variances. This covariance forecasting technique, termed the modified Kalman filter, was then used in a 1 month three-dimensional field application. Two updating scenarios were tested: (1) updating every 2 to 3 days and (2) a single update. The data used were from the Nerrigundah field site, near Newcastle, Australia. This study demonstrates the feasibility of data assimilation in a quasi threedimensional distributed soil moisture model, provided simplified covariance forecasting techniques are used. It also identifies that (1) the soil moisture profile cannot be retrieved from near-surface soil moisture measurements when the near-surface and deep soil layers become decoupled, such as during extreme drying events; (2) if simulation of the soil moisture profile is already good, the assimilation can result in a slight degradation, but if the simulation is poor, assimilation can yield a significant improvement; (3) soil moisture profile retrieval results are independent of initial conditions; and (4) the required update frequency is a function of the errors in model physics and forcing data.
منابع مشابه
One-Dimensional Soil Moisture Profile Retrieval by Assimilation of Near-Surface Measurements: A Simplified Soil Moisture Model and Field Application
The Kalman filter assimilation technique is applied to a simplified soil moisture model for retrieval of the soil moisture profile from near-surface soil moisture measurements. First, the simplified soil moisture model is developed, based on an approximation to the Buckingham–Darcy equation. This model is then used in a 12month one-dimensional field application, with updating at 1-, 5-, 10-, an...
متن کاملAn EKF assimilation of AMSR-E soil moisture into the ISBA land surface scheme
[1] An Extended Kalman Filter (EKF) for the assimilation of remotely sensed nearsurface soil moisture into the Interactions between Surface, Biosphere, and Atmosphere (ISBA) model is described. ISBA is the land surface scheme in Météo-France’s Aire Limitée Adaptation Dynamique développement InterNational (ALADIN) Numerical Weather Prediction (NWP) model, and this work is directed toward providi...
متن کاملSoil moisture initialization for climate prediction: Assimilation of scanning multifrequency microwave radiometer soil moisture data into a land surface model
[1] Climate model prediction skill is currently limited in response to poor land surface soil moisture state initialization. However, initial soil moisture state prediction skill can potentially be enhanced by the assimilation of remotely sensed near-surface soil moisture data in off-line simulation. This study is one of the first to evaluate such potential using actual remote sensing data toge...
متن کاملA methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations
Because of its long-term persistence, accurate initialization of land surface soil moisture in fully coupled global climate models has the potential to greatly increase the accuracy of climatological and hydrological prediction. To improve the initialization of soil moisture in the NASA Seasonal-to-Interannual Prediction Project (NSIPP), a onedimensional Kalman filter has been developed to assi...
متن کاملModeling and assimilation of root zone soil moisture using remote sensing observations in Walnut Gulch Watershed during SMEX04
Soil moisture status in the root zone is an important component of the water cycle at all spatial scales (e.g., point, field, catchment, watershed, and region). In this study, the spatio-temporal evolution of root zone soil moisture of the Walnut Gulch Experimental Watershed (WGEW) in Arizona was investigated during the Soil Moisture Experiment 2004 (SMEX04). Root zone soil moisture was estimat...
متن کامل