Parallel Landscape Driven Data Reduction & Spatial Interpolation Algorithm for Big LiDAR Data
نویسندگان
چکیده
Airborne Light Detection and Ranging (LiDAR) topographic data provide highly accurate digital terrain information, which is used widely in applications like creating flood insurance rate maps, forest and tree studies, coastal change mapping, soil and landscape classification, 3D urban modeling, river bank management, agricultural crop studies, etc. In this paper, we focus mainly on the use of LiDAR data in terrain modeling/Digital Elevation Model (DEM) generation. Technological advancements in building LiDAR sensors have enabled highly accurate and highly dense LiDAR point clouds, which have made possible high resolution modeling of terrain surfaces. However, high density data result in massive data volumes, which pose computing issues. Computational time required for dissemination, processing and storage of these data is directly proportional to the volume of the data. We describe a novel technique based on the slope map of the terrain, which addresses the challenging problem in the area of spatial data analysis, of reducing this dense LiDAR data without sacrificing its accuracy. To the best of our knowledge, this is the first ever landscape-driven data reduction algorithm. We also perform an empirical study, which shows that there is no significant loss in accuracy for the DEM generated from a 52% reduced LiDAR dataset generated by our algorithm, compared to the DEM generated from an original, complete LiDAR dataset. For the accuracy of our statistical analysis, we perform Root Mean Square Error (RMSE) comparing all of the grid points of the original DEM to the DEM generated by reduced data, instead of comparing a few random control points. Besides, our multi-core data reduction algorithm is highly scalable. We also describe a modified parallel Inverse Distance Weighted (IDW) spatial interpolation method and show that the DEMs it generates are time-efficient and have better accuracy than the one’s generated by the traditional IDW method.
منابع مشابه
Airborne LiDAR for DEM generation: some critical issues
Airborne LiDAR is one of the most effective and reliable means of terrain data collection. Using LiDAR data for DEM generation is becoming a standard practice in spatial related areas. However, the effective processing of the raw LiDAR data and the generation of an efficient and high-quality DEM remain big challenges. This paper reviews the recent advances of airborne LiDAR systems and the use ...
متن کاملA Comparative Study of Curvature and Grid Data Reduction Algorithms for Lidar-derived Digital Terrain Models
Abstract A digital terrain model (DTM) is defined as the digital cartographic representation of the elevation of the earth's surface created from discrete elevation points. DTMs have been applied to a diverse field of tasks, such as forest management, urban planning, ice sheet mapping, flood control, road design, hydraulic simulation, visibility analysis of the terrain, and topographic change q...
متن کاملUsing Solar Spatial Analyst to Calculate Global Solar Radiation, 22th Region of Tehran as the Case Study
Solar Radiation is considered as an important parameter in modeling environmental, hydrologic and biophysical processes. One of the reasons that solar radiations are not extensively used in models is the problem of its measurement in different points. Solar Analyst Viewshed Algorithm makes possible calculation of the topographic effects on solar radiation at local and landscape scales. With res...
متن کاملA Hybrid Parallel Spatial Interpolation Algorithm for Massive LiDAR Point Clouds on Heterogeneous CPU-GPU Systems
Nowadays, heterogeneous CPU-GPU systems have become ubiquitous, but current parallel spatial interpolation (SI) algorithms exploit only one type of processing unit, and thus result in a waste of parallel resources. To address this problem, a hybrid parallel SI algorithm based on a thin plate spline is proposed to integrate both the CPU and GPU to further accelerate the processing of massive LiD...
متن کامل3D building roof reconstruction from airborne LiDAR point clouds: a framework based on a spatial database
Three-dimensional (3D) building models are essential for 3D Geographic Information Systems and play an important role in various urban management applications. Although several light detection and ranging (LiDAR) data-based reconstruction approaches have made significant advances toward the fully automatic generation of 3D building models, the process is still tedious and time-consuming, especi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 5 شماره
صفحات -
تاریخ انتشار 2016