Cartan Subalgebras in C*-Algebras
نویسندگان
چکیده
According to J. Feldman and C. Moore’s wellknown theorem on Cartan subalgebras, a variant of the group measure space construction gives an equivalence of categories between twisted countable standard measured equivalence relations and Cartan pairs, i.e., a von Neumann algebra (on a separable Hilbert space) together with a Cartan subalgebra. A. Kumjian gave a C∗-algebraic analogue of this theorem in the early eighties. After a short survey of maximal abelian self-adjoint subalgebras in operator algebras, I present a natural definition of a Cartan subalgebra in a C∗-algebra and an extension of Kumjian’s theorem which covers graph algebras and some foliation algebras.
منابع مشابه
N ov 2 00 6 Conjugacy of Cartan subalgebras of complex finite dimensional
In the present work the properties of Cartan subalgebras and their connection with regular elements in finite dimensional Lie algebras are extended to the case of Leibniz algebras. It is shown that Cartan subalgebras and regular elements of a Leibniz algebra correspond to Cartan subalgebras and regular elements of a Lie algebra by a natural homomorphism. Conjugacy of Cartan subalgebras of Leibn...
متن کاملOn the Cartan Subalgebras of Lie Algebras over Small Fields
In this note we study Cartan subalgebras of Lie algebras defined over finite fields. We prove that a possible Lie algebra of minimal dimension without Cartan subalgebras is semisimple. Subsequently, we study Cartan subalgebras of gl(n, F ). AMS classification: 17B50
متن کاملCartan Subalgebras in Lie Algebras of Associative Algebras
A Cartan subalgebra of a finite-dimensional Lie algebra L is a nilpotent subalgebra H of L that coincides with its normalizer NL H . Such subalgebras occupy an important place in the structure theory of finite-dimensional Lie algebras and their properties have been explored in many articles (see, e.g., Barnes, 1967; Benkart, 1986; Wilson, 1977; Winter, 1969). In general (more precisely, when th...
متن کامل∗ - Algebras
According to J. Feldman and C. Moore's well-known theorem on Cartan subalgebras, a variant of the group measure space construction gives an equivalence of categories between twisted countable standard measured equivalence relations and Cartan pairs, i.e. a von Neumann algebra (on a separable Hilbert space) together with a Cartan subalgebra. A. Kumjian gave a C *-algebraic analogue of this theor...
متن کاملA new proof of the Kirchberg-Phillips theorem
Cartan subalgebras, automorphisms and the UCT problem Selçuk Barlak This talk deals with the connection between the UCT problem for separable, nuclear C*-algebras and Cartan subalgebras, that is, MASAs that admit faithful conditional expectations and whose normalizers generate the ambient C*-algebras. We present a characterization, in terms of Cartan subalgebras, of the UCT for fixed point alge...
متن کامل