Pathogenic mutations and sequence variants within mitofusin 2 gene in Polish patients with different hereditary motor-sensory neuropathies.

نویسندگان

  • Katarzyna Kotruchow
  • Dagmara Kabzińska
  • Andrzej Kochański
چکیده

At the time of its first description in 2004, MFN2 was considered the most frequently mutated gene in hereditary motor and sensory neuropathy type 2 (HMSN 2). However recent studies have shown that the frequency of MFN2 gene mutations in HMSN II patients is surprisingly low. To date, no systematic studies devoted to HMSN IIa in Poland have been carried out. In this study, we searched for MFN2 gene mutations in Polish patients representing the population of nearly 40 million. We decided to include a wide spectrum of clinical phenotypes in the study, proving able to detect, in a group of 67 affected patients: 1) 3 pathogenic mutations; 2) 3 sequence variants of unknown pathogenic status; 3) 9 rare MFN2 gene sequence variants; 4) 6 common polymorphisms. The frequency of MFN2 gene mutations in the whole group of patients is 4.5%. Due to the high frequency of MFN2 gene sequence variants within single patients we could not definitely exclude the cumulative effect of these contributing to the HMSN II phenotype. The MFN2 gene should therefore be considered in Polish HMSN II patients, though it is still not possible to determine its position in HMSN II molecular diagnostics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mice Hemizygous for a Pathogenic Mitofusin-2 Allele Exhibit Hind Limb/Foot Gait Deficits and Phenotypic Perturbations in Nerve and Muscle

Charcot-Marie-Tooth disease type 2A (CMT2A), the most common axonal form of hereditary sensory motor neuropathy, is caused by mutations of mitofusin-2 (MFN2). Mitofusin-2 is a GTPase required for fusion of mitochondrial outer membranes, repair of damaged mitochondria, efficient mitochondrial energetics, regulation of mitochondrial-endoplasmic reticulum calcium coupling and axonal transport of m...

متن کامل

Histopathological findings in hereditary motor and sensory neuropathy of axonal type with onset in early childhood associated with mitofusin 2 mutations.

Neuropathologic abnormalities can be sufficiently characteristic to suggest the genetic basis of some hereditary neuropathies such as those associated with mutations in MPZ, GJB1, GDAP1, MTMR2, SH3TC2, PRX, FGD4, and LMNA. We analyzed the morphologic features of 9 sural nerve biopsies from 6 patients with mutations of mitofusin 2. All patients presented in early childhood with axonal neuropathi...

متن کامل

Improved inherited peripheral neuropathy genetic diagnosis by whole-exome sequencing

Inherited peripheral neuropathies (IPNs) are a group of related diseases primarily affecting the peripheral motor and sensory neurons. They include the hereditary sensory neuropathies (HSN), hereditary motor neuropathies (HMN), and Charcot-Marie-Tooth disease (CMT). Using whole-exome sequencing (WES) to achieve a genetic diagnosis is particularly suited to IPNs, where over 80 genes are involved...

متن کامل

Genotype-phenotype correlations in Charcot-Marie-Tooth disease type 2 caused by mitofusin 2 mutations.

BACKGROUND Mutations in the gene encoding mitofusin 2 (MFN2) cause Charcot-Marie-Tooth disease type 2 (CMT2), with heterogeneity concerning severity and associated clinical features. OBJECTIVE To describe MFN2 mutations and associated phenotypes in patients with hereditary motor and sensory neuropathy (HMSN). DESIGN Direct sequencing of the MFN2 gene and clinical investigations of patients ...

متن کامل

Computational approach towards identification of pathogenic missense mutations in AMELX gene and their possible association with amelogenesis imperfecta

Amelogenin gene (AMEL-X) encodes an enamel protein called amelogenin, which plays a vital role in tooth development. Any mutations in this gene or the associated pathway lead to developmental abnormalities of the tooth. The present study aims to analyze functional missense mutations in AMEL-X genes and derive an association with amelogenesis imperfecta. The information on miss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta neurobiologiae experimentalis

دوره 75 3  شماره 

صفحات  -

تاریخ انتشار 2015