Evaluating SPAN Incremental Learning for Handwritten Digit Recognition
نویسندگان
چکیده
In a previous work [12, 11], the authors proposed SPAN: a learning algorithm based on temporal coding for Spiking Neural Network (SNN). The algorithm trains a neuron to associate target spike patterns to input spatio-temporal spike patterns. In this paper we present the details of experiment to evaluate the feasibility of SPAN learning on a real-world dataset: classifying images of handwritten digits. As spike encoding is an important issue in using SNN for practical applications, we discuss few methods for image conversion to spike patterns. The experiment yields encouraging results to consider the SPAN learning for practical temporal pattern recognition applications.
منابع مشابه
Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملAutomatic Recognition of Off-line Handwritten Arabic (Indian) Numerals Using Support Vector and Extreme Learning Machines
This paper describes a technique using Support Vector (SVM) and Extreme Learning Machines (ELM) for automatic recognition of off-line handwritten Arabic (Indian) numerals. The features of angle, distance, horizontal, and vertical span are extracted from these numerals. The database has 44 writers with 48 samples of each digit totaling 21120 samples. A two-stage exhaustive parameter estimation t...
متن کاملIsolated Handwritten Digit Recognition using Adaptive Unsupervised Incremental Learning Technique
This paper presents a new approach to off-line handwritten numeral recognition. From the concept of perturbation due to writing habits and instruments, we propose a recognition method which is able to account for a variety of distortions due to eccentric handwriting. The recognition of handwritten numerals is a challenging task in the field of image processing and pattern recognition. It can be...
متن کاملA class-modular GLVQ ensemble with outlier learning for handwritten digit recognition
A class-modular generalized learning vector quantization (GLVQ) ensemble method with outlier learning for handwritten digit recognition is proposed. A GLVQ classifier is one of discriminative methods. Though discriminative classifiers have remarkable ability to solve character recognition problems, they are poor at outlier resistance. To overcome this problem, a GLVQ classifier trained with bot...
متن کاملArabic Handwritten Digit Recognition Based on Restricted Boltzmann Machine and Convolutional Neural Networks
Handwritten digit recognition is an open problem in computer vision and pattern recognition, and solving this problem has elicited increasing interest. The main challenge of this problem is the design of an efficient method that can recognize the handwritten digits that are submitted by the user via digital devices. Numerous studies have been proposed in the past and in recent years to improve ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012