Dynamic Effects on the Powder Line Shapes of Half-Integer Quadrupolar Nuclei: A Solid-State NMR Study of XO4 Groups
نویسندگان
چکیده
Multinuclear solid-state nuclear magnetic resonance studies (185/187Re, 55Mn, 75As, and 1H NMR) were undertaken on a series of polycrystalline inorganic salts incorporating diamagnetic XO4 groups, X being a half-integer quadrupolar nucleus. Exploiting data acquisition protocols that were recently developed for observing undistorted half-integer quadrupole central transitions, some of the largest quadrupole coupling constants reported to date by high field NMR were characterized (e2qQ/h ≈ 300 MHz). On repeating such measurements as a function of temperature, certain samples displayed reversible changes that could not be rationalized in terms of the usual temperature dependencies of the nuclear quadrupolar couplings. Instead, dynamic exchange processes between chemically or magnetically inequivalent sites had to be invoked. To quantitatively analyze these processes, the semiclassical Bloch-McConnell formalism for chemical exchange was extended to account for second-order quadrupole effects. Insight into the potential nature of the chemical dynamics was also obtained from quantum chemical calculations of the coupling parameters on model systems.
منابع مشابه
Solid state separated-local-field NMR spectroscopy on half-integer quadrupolar nuclei: principles and applications to borane analysis.
New multidimensional NMR methods correlating the quadrupolar and heteronuclear dipolar interactions affecting a half-integer quadrupolar spin in the solid state are introduced and exemplified. The methods extend separated-local-field magic-angle spinning (SLF MAS) NMR techniques that have been used successfully in spin-(1)/(2) spectroscopy to the study of S >/= (3)/(2) nuclei. In our implementa...
متن کاملHigh resolution 3D exchange NMR spectroscopy and the mapping of connectivities between half-integer quadrupolar nuclei.
A novel approach to the determination of structure and potential dynamics in the solid-state NMR spectroscopy of half-integer quadrupolar nuclei is proposed and demonstrated. The new experiment combines into a single three-dimensional sequence, 2D multiple-quantum magic-angle-spinning NMR and 2D exchange NMR protocols. The result separates for each inequivalent chemical site its spin-diffusion ...
متن کاملMultiple-Quantum Magic- Angle Spinning NMR: A New Method for the Study of Quadrupolar Nuclei in Solids
Whereas solid state isotropic spectra can be obtained from spin-'/2 nuclei by fast magic-angle spinning (MAS), this methodology fails when applied on half-integer quadrupoles due to the presence of non-negligible secondorder anisotropic effects. Very recently, however, we have shown that the combined use of MAS and bidimensional multiple-quantum (MQ) spectroscopy can refocus these anisotropies;...
متن کاملHigh-resolution multiple quantum MAS NMR spectroscopy of half-integer quadrupolar nuclei
We demonstrate the utility of a two-pulse sequence in obtaining high-resolution solid state NMR spectra of half-integer quadrupolar nuclei with magic-angle-spinning (MAS). The experiment, which utilizes multiple/single-quantum correlation, was first described in a different form by Frydman and Harwood [J. Am. Chem. Soc. 117 (1995) 5367] and yields high-resolution isotropic NMR spectra where shi...
متن کاملResidual dipolar couplings between quadrupolar nuclei in high resolution solid state NMR: Description and observations in the high-field limit
Nonsecular dipolar couplings between spin2 nuclei that are in close proximity to quadrupolar spins have been extensively documented in solid state nuclear magnetic resonance ~NMR!, particularly when involving directly bonded S5C, I5N spin pairs. These couplings arise due to the quadrupole-induced tilting of I’s nuclear spin quantization axes, and their most notable characteristic is that they c...
متن کامل