MTTF Estimation using importance sampling on Markov models
نویسندگان
چکیده
Very complex systems occur nowadays quite frequently in many technological areas and they are often required to comply with high dependability standards. To study their availability and reliability characteristics, Markovian models are commonly used. Due to the size and complexity of the systems, and due to the rarity of system failures, both analytical solutions and \crude" simulation can be ineecient or even non-relevant. A number of variance reduction Monte Carlo techniques have been proposed to overcome this diiculty; importance sampling methods are among the most eecient. The objective of this paper is to survey existing importance sampling schemes, to propose some improvements and to discuss on their diierent properties. Estimation de la MTTF utilisant l' echantillonnage pr ef erentiel sur des mod eles Markoviens R esum e : Des syst emes tr es complexes interviennent de nos jours fr equem-ment dans beaucoup de domaines technologiques et doivent souvent oorir une importante s^ uret e de fonctionnement. Pour etudier leurs caract eristiques de disponibilit e et de abilit e, les mod eles Markoviens sont commun ement utilis es. En raison de la taille et de la complexit e de ces syst emes, et en raison de la ra-ret e des d efaillances, les solutions analytiques et la simulation \standard" sont toutes deux ineecaces, et m^ eme parfois non applicables. Un certain nombre de techniques de Monte Carlo r eduisant la variance ont et e propos ees pour sur-monter cette diicult e; les m ethodes d' echantillonnage pr ef erentiel sont parmi les plus eecaces. L'objectif de cet article est de passer en revue les proc ed es d' echantillonnage pr ef erentiel existants, de proposer des am eliorations et de discuter des dii erentes propri et es de ces m ethodes.
منابع مشابه
بررسی قابلیت تحمل پذیری خطا در شبکه های حسگر بی سیم
To increase reliability and fault tolerance in wireless sensor network, using spare nodes is a useful method. In this article, we survey the influence of using single-type and multi-type spare nodes on the fault tolerance in the low density. To achieve this, we use single-type and multi-type spare nodes and construct the network reliability graph for one, two and three-node densities. Then, we ...
متن کاملOn Derivative Estimation of the Mean Time to Failure in Simulations of Highly Reliable Markovian Systems
The mean time to failure (MTTF) of a Markovian system can be expressed as a ratio of two expectations. For highly reliable Markovian systems, the resulting ratio formula consists of one expectation that cannot be estimated with bounded relative error when using standard simulation, while the other, which we call a non-rare expectation, can be estimated with bounded relative error. We show that ...
متن کاملSimulation of transient performance measures for stiff markov chains
We consider the simulation of transient performance measures of high reliable faulttolerant computer Systems. The most widely used mathematical tools to model the behavior of these Systems are Markov processes. Here, we deal basically with the simulation ofthe mean time tofailure (MTTF) and the reliability, R(t), ofthe system at time t Some variance réduction techniques are used to reduce the s...
متن کاملRare-Event Estimation for Dynamic Fault Trees
Article describes the results of the development and using of Rare-Event Monte-Carlo Simulation Algorithms for Dynamic Fault Trees Estimation. For Fault Trees estimation usually analytical methods are used (Minimal Cut sets, Markov Chains, etc.), but for complex models with Dynamic Gates it is necessary to use Monte-Carlo simulation with combination of Importance Sampling method. Proposed artic...
متن کاملImportance Sampling in Stochastic Programming: A Markov Chain Monte Carlo Approach
Stochastic programming models are large-scale optimization problems that are used to facilitate decisionmaking under uncertainty. Optimization algorithms for such problems need to evaluate the expected future costs of current decisions, often referred to as the recourse function. In practice, this calculation is computationally difficult as it requires the evaluation of a multidimensional integ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Monte Carlo Meth. and Appl.
دوره 8 شماره
صفحات -
تاریخ انتشار 2002